
A COMPREHENSIVE STUDY OF TIME LOCK PUZZLES AND TIMED
SIGNATURES IN CRYPTOGRAPHY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CEYLİN DOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

JULY 2023

Approval of the thesis:

A COMPREHENSIVE STUDY OF TIME LOCK PUZZLES AND TIMED
SIGNATURES IN CRYPTOGRAPHY

submitted by CEYLİN DOĞAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Murat Cenk
Cryptography, METU

Assoc. Prof. Dr. Oğuz Yayla
Cryptography, METU

Assoc. Prof. Dr. Ahmet Sınak
Mathematics and Computer Science,
Necmettin Erbakan University

Assist. Prof. Dr. Ayşe Nurdan SARAN
Computer Engineering, Çankaya University

Assist. Prof. Dr. Talha Arıkan
Mathematics, Hacettepe University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: CEYLİN DOĞAN

Signature :

v

vi

ABSTRACT

A COMPREHENSIVE STUDY OF TIME LOCK PUZZLES AND TIMED
SIGNATURES IN CRYPTOGRAPHY

Doğan, Ceylin

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

July 2023, 69 pages

Timed-release cryptography is an innovative approach to sending information that is
designed to be received at a specific time in the future. The thesis focuses on the evo-
lution of timed-release cryptography, which was initially proposed by May in 1993
[21] as a means of sending encrypted messages into the future. This concept led to
the development of time-lock puzzles by Rivest, Shamir, and Wagner in 1996 [25],
which enabled the generation of puzzles with hidden solutions that became visible
after a specific time had elapsed. This thesis provides a comprehensive survey of the
existing literature on timed cryptography, including time-lock puzzles, timed com-
mitment schemes, and timed signature schemes, to provide a historical background
of timed cryptography. In addition, this study analyzes the efficiency and security
levels of various cryptographic techniques, identifies areas for future research and de-
velopment, and highlights the potential applications of timed cryptography in real-life
scenarios such as contract signing and payment channel protocols.

Keywords: timed-release cryptography, time-lock puzzles, timed commitments, timed
signatures

vii

viii

ÖZ

KRİPTOGRAFİK ZAMAN KİLİTLİ BULMACALAR VE ZAMANLANMIŞ
İMZALAR ÜZERİNE KAPSAMLI BİR ARAŞTIRMA

Doğan, Ceylin

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Temmuz 2023, 69 sayfa

Zamanlanmış kriptografi, bilgilerin gelecekte belirlenmiş bir zamanda güvenli bir şe-
kilde erişilebilir olması için tasarlanmış yenilikçi bir yaklaşımdır. Bu tez ilk olarak
1993 yılında May [21] tarafından önerilen şifrelenmiş mesajları geleceğe göndere-
bilmemiz üzerine çalışan zamanlanmış kriptografinin evrimsel gelişimine odaklanır.
Zamanlanmış kriptografi fikri, 1996 yılında Rivest, Shamir ve Wagner [25] tarafın-
dan kilitli bulmacaların geliştirilmesine öncülük etmiştir. Bu yöntem, belirlenmiş bir
süre geçtikten sonra gizlenmiş olan çözümlerine ulaşabildiğimiz zaman kilitli bul-
macaların temelini oluşturur. Bu tez, okuyucuya zamanlanmış şifreleme alanındaki
mevcut literatür hakkında kapsamlı bir araştırma sunar. Aynı zamanda, zaman kilitli
bulmacalarını, zamanlanmış taahhüt ve imza şemalarını inceleyerek, zamanlanmış
kriptografi alanını tarihsel arka planı ile birlikte ortaya koyar. Tüm bunlara ek olarak,
bu çalışma gelecekteki araştırma ve geliştirme alanlarını belirleyerek ve zamanlan-
mış kriptografinin sözleşme imzalama ve ödeme kanalı protokolleri gibi gerçek hayat
senaryolarındaki potansiyel uygulamalarını vurgulayarak, çeşitli kriptografik teknik-
lerin verimlilik ve güvenlik seviyelerini analiz etmektedir.

Anahtar Kelimeler: zamanlanmış kriptografi, zaman kilitli bulmacalar, zamanlanmış
imzalar

ix

To my beloved father whose light I always carry in my heart

x

ACKNOWLEDGMENTS

I am grateful to my supervisor, Assoc. Prof. Dr. Oğuz Yayla, for his guidance during
this thesis. Working with him has been a pleasure. I extend my appreciation to Prof.
Dr. Murat Cenk for his continuous support throughout my master’s program. His
guidance has been immensely valuable to my academic journey. I would also like to
thank all of my committee members for their contributions and encouragement.

Furthermore, I am deeply thankful to my beloved professor, Assoc. Prof. Dr. Samet
Bağçe, whose presence has enlightened my life. I always carry his support and kind-
ness in my heart.

I am also indebted to my family, particularly my dear mother Hatice Doğan, and my
sisters Derin Doğan and Ecem Ömeroğlu, for their love and support. Their presence
and encouragement have been a constant source of strength. Most especially, I am
grateful to my sister Derin, she was "the one who remembers to turn on the light even
in the darkest of times". Thank you so much sister for being my best friend all my
life.

Special thanks to my lifetime friends Emre Karabıyık, Dilan Yıldırım, Efe Kurtoğlu,
and Büşra İlayda Ses. I am deeply grateful for their endless support and the incredible
efforts they have made on my behalf. Their love has had a profound impact on me.
During my time in Ankara, I have been fortunate to encounter individuals who have
made this city and my life beautiful. Thanks to Emre Güngör, Arca Özçoban, Burak
Kaya and Piki for their valuable friendships in my journey. It is precious for me to
make all of my friends proud. I would like to extend my thanks to my colleagues
Beste Akdoğan, Esra Günsay, and H. Bartu Yünüak for their exceptional work and
contributions. Beste has been the best buddy for all the three years. Her support and
contributions are priceless.

For the last year, one person showed me special support. I know he did his best for
me to make this thesis better. He lifted me up when I felt down, much like the day
that we were 30 meters underwater, and I got breathless, he came up to me with his
octopus and give me the confidence to stay calm and move on. Thank you, Mahmut
Şahin for all our good memories.

Lastly, I want to thank my lovely cat, Miyu, who is the only one who stayed awake
with me during the late hours of the nights.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

2 PRELIMINARY TO THE SUBJECT 5

2.1 Notations . 5

2.2 Mathematical Backgrounds 6

2.3 Digital Signatures . 8

2.3.1 RSA Signature Scheme 8

2.3.2 Digital Signature Algorithm 9

2.3.3 Elliptic Curve Digital Signature Algorithm 10

xiii

2.3.4 Schnorr Signature Scheme 11

2.3.5 BLS Signature Scheme 12

3 TIME-LOCK PUZZLES . 15

3.1 Merkle’s Cryptographic Puzzles 15

3.2 Repeated Squaring Based Time-lock Puzzles 17

3.3 Homomorphic Time-lock Puzzles 20

3.3.1 Linearly Homomorphic Time-lock Puzzles (LHTLP) 23

3.3.2 Multiplicatively Homomorphic Time-lock Puzzles 24

3.3.3 Fully Homomorphic Time-lock Puzzles 26

3.4 Applications of Homomorphic Time-Lock Puzzles 28

3.4.1 Linearly Homomorphic Time-Lock Puzzles on E-
Voting . 29

3.4.2 Multiplicatively Homomorphic Time-Lock Puzzles
on Multi-Party Contract Signing 32

4 TIMED SIGNATURES . 35

4.1 Boneh and Naor’s Timed Signature Scheme 36

4.1.1 Boneh and Naor’s Timed Commitment Scheme: [7] 38

4.1.2 Boneh and Naor’s Timed Signature Scheme: 40

4.2 Garay and Jakobsson’s Timed Signatures 41

4.2.1 Garay and Jakobsson’s Time-Line Commitment Scheme: 43

4.2.2 Garay and Jakobsson’s Time-Line Signature Scheme: 44

4.2.3 Timed RSA Signature Scheme: 45

xiv

4.2.4 Timed Schnorr Signature Scheme: 46

4.2.5 Timed DSA Signature Scheme: 47

4.3 Verifiable Timed Signature Scheme 48

4.3.1 VT-BLS Signatures 52

4.3.2 VT-Schnorr Signatures 54

4.3.3 VT-ECDSA Signatures 56

5 COMPARISON AND ANALYSIS 59

5.1 Time-Lock Puzzles . 59

5.2 Timed Commitments and Timed Signature Schemes 61

6 CONCLUSION . 65

REFERENCES . 67

xv

xvi

LIST OF TABLES

Table 5.1 Table of Time-lock Puzzles . 60

Table 5.2 Comparison of time-lock puzzles 60

Table 5.3 Computational complexities of verifiable timed signatures 63

xvii

LIST OF FIGURES

Figure 2.1 RSA Signature Scheme . 9

Figure 2.2 DSA Scheme . 10

Figure 2.3 ECDSA Scheme . 11

Figure 2.4 Schnorr Signature Scheme . 12

Figure 2.5 BLS Signature Scheme . 13

Figure 3.1 LHTLP Electronic Voting Scheme 31

Figure 4.1 Schema for Timed Commitment Scheme 37

Figure 4.2 Schema for Timed Signature Scheme 41

xviii

LIST OF ABBREVIATIONS

BBS Blum-Blum-Shub

BLS Boneh, Lynn and Shacham

DCR Decisional Composite Residuosity

DDH Decisional Diffie-Hellman

DLP Discrete Logarithm Problem

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

IFP Integer Factorization Problem

HTLP Homomorphic Time-Lock Puzzle

LHTLP Linearly Homomorphic Time-Lock Puzzle

MHTLP Multiplicatively Homomorphic Time-lock Puzzle

PRAM Parallel Random Access Machines

PPT Probabilistic Polynomial Time

RSW Rivest, Shamir and Wagner

TLP Time-Lock Puzzle

xix

xx

CHAPTER 1

INTRODUCTION

The concept of timed-release cryptography was initially conceived as a means of

"sending information to the future". The origin of this idea can be traced back to

Timothy May’s 1993 [21] proposition, in which he posed the brilliant question of

why anyone would want to send encrypted messages to the future. May’s proposal

opened the door for researchers to explore the practical applications of timed-release

cryptography and devise cryptographic techniques to achieve this goal. Consequently,

significant efforts have been made to develop cryptographic methodologies that en-

able the transmission of encrypted messages into the future.

In 1996, Rivest, Shamir, and Wagner [25] introduced the concept of time-lock puz-

zles, which evolved from May’s timed-release cryptography. Their protocol allowed

the sender to generate a puzzle with a solution that remained hidden until a specific

time elapsed. This notion was based on the assumption that exponentiation modulo

an RSA integer is an inherently sequential computation. This work stood as a leading

candidate for a long time until other constructions were proposed. Bitansky et al.

proposed a new candidate for time-lock puzzles as an alternative to Rivest, Shamir,

and Wagner’s scheme in 2015 [3]. Their proposal utilizes randomized encodings and

can be proven secure under the assumption that non-parallelizing languages exist.

These languages require a depth of at least T circuits to decide, which is necessary

for the existence of time-lock puzzles. The authors implemented their construction

with various randomized encodings from existing literature, which yielded increas-

ingly better efficiency based on stronger cryptographic assumptions. These assump-

tions ranged from one-way functions to indistinguishability obfuscation. The authors

1

also constructed other types of puzzles, such as proofs of work, using randomized

encodings and a suitable worst-case hardness assumption. Recently, Malavolta and

Thyagarajan [20] proposed homomorphic time-lock puzzles, increasing the previous

constructions’ efficiency. They also presented new protocols for applications, such as

e-voting and fair contract signing. These advances have opened up new avenues for

research and practical implementations in timed-release cryptography.

Time-lock puzzles are considered the primary building blocks of timed-release cryp-

tography, which have enabled further exploration of various cryptographic use cases,

including timed commitments and timed signatures. The introduction of timed com-

mitment schemes by Boneh and Naor [7] extended the standard notion of commit-

ments, allowing the receiver to retrieve the committed value, even if the committer

is coerced into revealing the information, albeit with significant effort. Garay and

Jakobsson [15] subsequently explored the timed release of digital signatures, demon-

strating their application for RSA, Schnorr, and DSA signatures based on Boneh and

Naor’s work on timed commitments. More recently, Thyagarajan et al. [30] pre-

sented a comprehensive study on verifiable timed signatures, utilizing homomorphic

time-lock puzzles, demonstrating their application in real-life scenarios such as con-

tract signing and payment channel protocols. Additionally, the study presented the

verifiable linkable timed signatures [29] as a solution to the weaknesses of Mon-

ero, the largest privacy-preserving cryptocurrency, without the need for system-wide

changes such as a hard fork in its blockchain.

The central focus of this thesis is to conduct a comprehensive survey of the exist-

ing literature on timed cryptography. Our objective is to examine, summarize and

compare various cryptographic techniques, which are time-lock puzzles, timed com-

mitment schemes, and timed signature schemes, in chronological order to provide a

historical background of timed cryptography. Despite the various benefits of timed

cryptography in terms of efficiency and security, there is still ongoing research and

development in this field to further improve their performance and address potential

vulnerabilities. By conducting a detailed analysis of the existing literature on timed

cryptography and comparing their efficiency and security levels, we can identify ar-

eas for future research and development and contribute to advancing the field. The

results of this research will be valuable for researchers, practitioners, and policymak-

2

ers in the field of cryptography, providing insights into the strengths and weaknesses

of timed cryptography and its potential applications in various scenarios.

3

4

CHAPTER 2

PRELIMINARY TO THE SUBJECT

This chapter aims to equip the reader with an adequate theoretical foundation con-

cerning timed cryptography by presenting several fundamental primitives, notations,

and definitions. To begin with, the notation utilized throughout this thesis will be

introduced, followed by a concise summary of essential mathematical and crypto-

graphic concepts. An in-depth elucidation of commitment schemes will also be pro-

vided, as they play a crucial role in timed signatures. Furthermore, the final section of

the chapter will explicate digital signatures and define specific digital signatures that

are particularly relevant to subsequent chapters.

2.1 Notations

Let ZN denotes residue class ring of modulo N . Z∗
N is defined as Z∗

N = {x ∈ ZN :

gcd(x,N) = 1}. JN is the group of elements of Z∗
N with Jacobi symbol +1. Euler

totient function is denoted as φ(.) Let p and q be large random primes and N = p.q.

N is called a strong RSA integer if p = 2p′+1 and q = 2q′+1 where p′ and q′ are also

primes. N is called a Blum integer if p and q are distinct primes each congruent to 3

mod 4. We denote that g is randomly chosen over any group G by using g ←$ G or

g ∈R G. The set {1, ..., n} is denoted by [n] in come chapter.

Also, specific definitions and notations will be given in the related chapters.

Definition 2.1.1. [4] f(n) = O(g(n)) means that there exist c, k ∈ Z+ such that

0 ≤ f(n) ≤ c.g(n) for all n ≥ k. The values of c and k must be fixed for f and

must not depend on n. Here O is a Landau symbol and also called asymptotic upper

5

bound. It is a theoretical measure of the execution of an algorithm.

2.2 Mathematical Backgrounds

In this section, we present several noteworthy cryptographic hard problems that will

serve as the foundation for the security proofs of puzzle and signature constructions

in the following chapters. Additionally, we will provide definitions and assumptions

as mathematical tools for the constructions.

Definition 2.2.1. (Probabilistic Algorithm) A probabilistic algorithm is an algorithm

with an additional command RANDOM that returns "0" or "1", each with probability

1/2.

Definition 2.2.2. (Deterministic Algorithm) A deterministic algorithm is an algo-

rithm that produces the same output for a given input, regardless of how many times

it is run. In other words, the output of the algorithm is entirely determined by its

input, and there is no randomness involved in the computation.

Definition 2.2.3. (Discrete Logarithm Problem) Let G be a multiplicative group, g

be a generator of G and h ∈ G. When g and h are given determining x that satisfies

the equation

gx = h

is a hard problem and called the discrete logarithm problem.

Definition 2.2.4. (Integer Factorization Problem) Given a composite number N ∈
ZN , finding for which x, y ∈ ZN satisfy N = x · y is a hard problem and called the

integer factorization problem.

Definition 2.2.5. (Decisional Diffie-Hellman Assumption) [10] Let G be a cyclic

group and g is a generator of G of order q. For given (ga, gb) such that a, b ←$ Zq,

gab is indistinguishable from a random element in G.

Definition 2.2.6. (Quadratic Residuosity Assumption) In Z∗
N , for an RSA modulus

N , let a ∈ QRN which is a square in Z∗
N , then it is indistinguishable from a random

element in JN .

6

Definition 2.2.7. (Decisional Composite Residuosity) In Z∗
N2 , for an RSA modulus

n, a random N -th power in Z∗
N2 is indistinguishable from a random element in Z∗

N2 .

Theorem 2.2.1. [10] When N = pq is strong RSA modulus, the DDH assumption

on JN is implied by the DDH assumption in both the large prime-order subgroups of

Z∗
p and Z∗

q and the quadratic residuosity assumption over Z∗
N .

Theorem 2.2.2. (The generalized Blum-Blum-Shub Assumption) [15] Let N be a

Blum integer. A BBS sequence is x0, x1, ..., xn with x0 = g2 mod N for a random

g ∈ ZN , and xi = x2
i−1 mod N , 1 ≤ i ≤ n. The sequence defined by taking the least

significant bit of the elements above is polynomial-time unpredictable (unpredictable

to the left and to the right), provided the quadratic residuosity assumption (QRA)

holds. Let k be an integer such that l < k < u. Then given the vector

< g2, g4, g16, ..., g2
2i

, ..., g2
2k

> mod N

the (l, u, δ, ϵ) generalized BBS assumption states that no PRAM algorithm whose

running time is less than δ · 2k can distinguish the element g22
k+1

from a random

quadratic residue R2 with probability larger than ϵ. The bound l precludes the paral-

lelization of the computation, while the bound u precludes the feasibility of comput-

ing square roots through factoring.

Theorem 2.2.3. (Sequential Squaring Assumption) [20] Let N be a uniform strong

RSA integer, g be a generator of JN , and T (·) be a polynomial. Then there exists

some 0 < ε < 1 such that for every polynomial-size adversary A = {Aλ}λ∈N who’s

depth is bounded from above by T ε(λ), there exists a negligible function µ(·) such

that

Pr

 b← A(N, g, T (λ), x, y) :

x←$ JN ; b←$ {0, 1}
if b = 0 then y ←$ JN
if b = 1 then y := x2T (λ)

 ≤ 1

2
+ µ(λ).

Definition 2.2.8. (Non-Interactive Zero-Knowledge: NIZK) [30] [26]

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP-witness-relation with corresponding

NP -language L := {x : there exists w such that R(x,w) = 1}. A NIZK for R have

three algorithms:

7

1. ZKsetup(1λ) → crs where λ is the security parameter and crs is the common

reference string.

2. ZKprove(crs, x, w) → π where the prover shows the validity of the statement

x with a witness w, and π is the proof.

3. ZKverify(crs, x, π) checks the proof π.

A NIZK system satisfies two properties: the verifier does not have more information

than the validity of x, and convincement of an invalid x is hard for any prover.

2.3 Digital Signatures

To create the timed signature schemes, we will present the frameworks of well-known

traditional ones.

A digital signature scheme typically consists of three essential functions: key genera-

tion KeyGen, signing Sign, and verification Verify. The KeyGen algorithm produces

a set of private-public key pairs (pk, sk), which are used by the Sign algorithm to gen-

erate the signature σ. The Verify algorithm then utilizes the corresponding pk to

verify the validity of the signature. In this scheme, the message is signed using the

private key and authenticated using the corresponding public key.

2.3.1 RSA Signature Scheme

RSA Signature Scheme was first proposed by R. L. Rivest, A. Shamir, and L. M.

Adlemanin in 1978 [24]. The signature scheme uses (KeyGen, Sign,Verify) algo-

rithms, and the key generation phase is identical to RSA encryption [24]. For secu-

rity, N needs at least 1024 bits to provide a security level of 80 bits, and the signature

needs to be at least 1024 bits long. For the signing and verification phase, exponenti-

ation operation is used with the public and private keys, respectively. Verification is

efficient as a small public key e can be chosen. Security depends on the IFP. We take

p and q as large prime numbers and m ∈ {0, 1}∗ in Figure 2.1.

8

Figure 2.1: RSA Signature Scheme

2.3.2 Digital Signature Algorithm

DSA Signatures Scheme was proposed by the National Institute of Standards and

Technology (NIST) in 1991. It is based on the Elgamal signature scheme [14]. For

security of DSA that is presented in Figure 2.2, to solve the DLP in p, the powerful

index calculus method can be applied. However, this method cannot be applied to

the DLP of the subgroup q. Therefore q can be smaller than p. To provide a security

level of 80 bits, p and q need to be at least 1024 and 160 bits, respectively. Signature

verification is slower when compared with RSA. Also, in Figure 2.2, m ∈ {0, 1}∗.

9

Figure 2.2: DSA Scheme

2.3.3 Elliptic Curve Digital Signature Algorithm

Elliptic Curve Cryptography (ECC) has been demonstrated to possess several advan-

tages over the widely-used RSA and other digital signature algorithms. ECC utilizes

significantly shorter key lengths ranging from 160 to 256 bits, compared to 1024 to

3072 bits in RSA and DL schemes. Without strong attacks against elliptic curve cryp-

tosystems, shorter bit lengths in ECC result in decreased processing time and shorter

signatures. These benefits motivated the standardization of the Elliptic Curve Digital

Signature Algorithm (ECDSA) by the American National Standards Institute (ANSI)

in 1998. In the scheme of ECDSA Figure 2.3, m ∈ {0, 1}∗.

10

Figure 2.3: ECDSA Scheme

2.3.4 Schnorr Signature Scheme

Schnorr proposes Schnorr Signature Algorithm in 1991 [27]. The scheme’s security

in Figure 2.4 is based on the supposed intractability of DLP.

11

Figure 2.4: Schnorr Signature Scheme

2.3.5 BLS Signature Scheme

BLS signature scheme is a digital signature scheme proposed by Boneh, Lynn, and

Shacham in 2001 [6]. In this scheme, bilinear mapping is used to verify. It can

function in any group where the Decisional Diffie-Hellman Problem is easy, but

the Computational Diffie-Hellman Problem is difficult. The scheme in Figure 2.5

consists of three algorithms (BLS.Gen,BLS. Sign,BLS.Verify), m ∈ {0, 1}∗, and

H : {0, 1}∗ → G1 that is a full-domain hash function and it is considered as a random

oracle.

12

Figure 2.5: BLS Signature Scheme

13

14

CHAPTER 3

TIME-LOCK PUZZLES

This chapter is dedicated to examining the fundamental components of timed cryp-

tography, focusing on time-lock puzzles. The discussion begins by introducing the

concept of cryptographic puzzles, followed by an in-depth exploration of the notion

of time in cryptography. Specifically, two notable constructions in the realm of time-

lock puzzles will be thoroughly investigated: the repeated squaring-based time-lock

puzzles and the homomorphic time-lock puzzles. By examining these constructions,

a comprehensive understanding of the principles underlying timed cryptography and

time-lock puzzles, in particular, will be achieved. Furthermore, this chapter will

present two applications of homomorphic time-lock puzzles, namely e-voting and

multiparty contract signing. These applications will provide insight into the compu-

tational differences between classical and homomorphic time-lock puzzles.

3.1 Merkle’s Cryptographic Puzzles

In 1978, R. C. Merkle published a revolutionary paper [22] that discusses a paradigm

of cryptography that tells us that for a cryptographic system, when two participants

want to share information, the security of their key channel is inevitable. Neverthe-

less, Merkle shows that this is not a necessity. We can construct secure cryptographic

systems using cryptographic puzzles (cryptograms that cannot be cryptanalyzed), al-

though an adversary leaks into our key channels. This was the first time cryptographic

puzzles have become an option for cryptographic schemes. The following algorithm

is a summary of Merkle’s cryptographic puzzle idea [22].

15

Merkle’s Approach [22]:

1. Alice and Bob want to communicate, and Eve takes place in this scenario as

an adversary. First, Alice and Bob decide on a strong encryption function F .

Any strong and suitable encryption function can be used. They will use cryp-

tographic puzzles for security. A cryptographic puzzle is nothing but the en-

cryption of some information with F . Solving a puzzle means decryption of F .

So we have F−1 as the inverse of F . They decide the total number of crypto-

graphic puzzles N , arbitrary constant C where the random key is selected from

a key space of size C ∗N . An exhaustive search through the key space can only

solve a puzzle. So, each puzzle requires O(N) efforts to break. To control the

difficulty of solving puzzles, they should make an optimization by restricting

the key space of encryption. If C is too big„ solving puzzles will be harder and

take much more time. Alice should not create a puzzle that can not be solved

in a reasonable time.

2. Alice generates N puzzles and sends them to Bob over the key channel. Each

puzzle has two pieces of information. The first one is a unique ID number for

identifying the related puzzle. The second one is a puzzle key, i.e., one of the

possible keys for subsequent encrypted communications. Alice chooses both

of them randomly and assigns them to the puzzles.

3. Bob takes N puzzles, picks one of them randomly, and solves it. It takesO(N)

time. After that, he gets two pieces of information, the ID of the puzzle and the

puzzle key. He sends the ID to Alice over the key channel.

4. When Alice gets the ID information, she knows which puzzle has exactly that

ID number and key.

5. After that, Alice and Bob use this puzzle key for further encrypted communi-

cations over the normal channel.

Security:

16

Since we assume that the key channel is not secure, Eve has the information of N

puzzles and ID that Bob sent. In order to learn which puzzle is associated with this

ID number and puzzle key, Eve should break puzzles at random until he finds the

correct one, which takes, on average, O(N2) time. Merkle’s method has two main

problems [25]: (i) brute-force key-search is parallelizable, and (ii) time estimation

for expected running time is not certain and depends on the order in which the keys

are examined.

3.2 Repeated Squaring Based Time-lock Puzzles

Rivest, Shamir, and Wagner proposed the first time-lock puzzles in 1996 [25]. They

aim to encrypt a message so that it can not be decrypted by anyone until a pre-

determined amount of time (real-time, not total CPU time) has passed, i.e., the goal

is to send information into the future. Time-lock cryptographic puzzles are presented

as computational mathematical problems that can not be solved without running a

computer continuously for at least a certain amount of time. The problem was that

the amount (large parallel computers) and the power of computers (hardware) could

affect the CPU time required to solve a computational problem. Their solution is

based on building time-lock puzzles with intrinsically sequential designs using re-

peated squaring and the random-access property of the Blum-Blum-Shub’s x2 mod n

pseudo-random number generator [5].

Rivest, Shamir and Wagner’s Algorithm [25]:

Suppose Alice wants to send the secret s to Bob. She encrypts s with a time-lock

puzzle for a period of t seconds as follows:

1. Alice chooses two random large primes p and q and computes:

N = pq,

φ(N) = (p− 1)(q − 1),

17

T = tS

where S is the number of squarings modulo N per second.

2. She chooses a suitable cryptosystem and encryption algorithm Enc and then

generates a random key k. She computes

Cs = Enc(k, s).

3. She picks a random x mod N where 1 < x < N and computes

e = 2T mod (φ(N)),

y = xe mod (N),

and encrypts k,

Ck = k + x2T = k + y mod (N).

4. She outputs the time-lock puzzle (N, T, x, Ck, Cs), and erases the secret values

p and q.

5. Bob takes the output and solves the puzzle by starting with x and performs T

sequential squaring in order to compute

y = x2T mod (N).

Security:

Factoring N and determining φ(N) is a hard problem (IFP). So, there is no faster

way of computing y than to start with x and perform T sequential squaring. In this

approach, a possible problem is that a computer needs to work continuously on the

puzzle until it is solved. Because the puzzle does not automatically become solvable

at a given time, it suits simple puzzles better (e.g., with time-to-solution under a

month).

Rivest, Shamir, and Wagner’s methodical approach is fundamental to comprehend-

ing, conceptualizing, and developing time-lock puzzles and allows us to establish a

precise and rigorous definition for time-lock puzzles.

Definition. A time-lock puzzle (TLP) is a tuple of two algorithms

(PGen,PSolve) defined as follows:

18

• Z ← PGen(T, s) probabilistic algorithm that takes as input a difficulty param-

eter T and a solution s ∈ {0, 1}λ, where λ is a security parameter, and outputs

a puzzle Z.

• s ← PSolve(Z) is a deterministic algorithm that takes as input a puzzle Z and

outputs a solution s.

Completeness:

For every λ, T , s ∈ {0, 1}λ and Z, PGen(T, s), PSolve(Z) outputs s.

Efficiency:

Z ← PGen(T, s) can be computed in time poly(λ, logT) and PSolve(Z) can be com-

puted in time poly(λ, T).

Definition 3.2.1. [20] A TLP is secure with gap ϵ < 1 if there exists a polynomial

T̃ (·) such that for all polynomials T (.) ≥ T̃ (·) and every polynomial-size adversary

A = {Aλ}λ∈N where the depth of A is bounded from above by T ϵ(λ), there exists

a negligible function µ such that for all λ ∈ N, and every pair of solutions s0, s1 ∈
{0, 1}λ it holds that:

Pr

 b← Aλ(Z) :
b←$ {0, 1}
Z ← TLP.PGen(t(λ), sb)

 ≤ 1

2
+ µ(λ).

Time-lock puzzles are cryptographic constructs that possess distinctive features. The

first characteristic is their ability to generate puzzles swiftly, which necessitates com-

putational resources significantly lower than T. This property is especially crucial

when concealing secrets over extended durations of time. The second feature is the

robust security they offer against parallel algorithms. Regardless of their size, circuits

possessing a depth lower than T cannot compromise the hidden secret s confidential-

ity.

Disadvantages:

• In the absence of a trusted third party, time-lock puzzles require the decrypter to

execute a lengthy computational process to access the concealed secret. Though

19

this is necessary to ensure security, it poses a potential disadvantage when time-

lock puzzles are implemented on a larger scale, as the computational burden

may become significant.

• No measures are taken to verify that the puzzle can be unlocked in the desired

time.

This traditional form of time-lock puzzles has been extensively utilized in various

cryptographic applications such as sealed-bid auctions [25], fair contract signing

[7], zero-knowledge arguments [12], and non-malleable commitments [19]. It can

be seen as the pioneer among all the other structures. Also, Bitansky et al. pro-

posed a new candidate for time-lock puzzles as an alternative to Rivest, Shamir, and

Wagner’s scheme in 2015 [3] as we mentioned in Chapter 1. They designed ran-

domized encoding based time-lock puzzles. The main contribution of their design

was its universal feature, as its security can be established by relying on any family

of non-parallelizing languages. It sets it apart from RSW’s proposal, which depends

on a specific computation’s non-parallelizability (on average) concerning a specific

distribution.

3.3 Homomorphic Time-lock Puzzles

The main disadvantage of repeated squaring-based and randomized encoding based

time-lock puzzles is that one needs to solve (brute-force) many puzzles before com-

puting some function over the embedded secrets. Both have a ’first compute, then

solve’ approach. Malavolta and Thyagarajan devised a solution to this critical short-

coming in 2019 [20]. They proposed a ’first compute then solve ’ method by con-

structing homomorphic time-lock puzzles (HTLP).

To put it simply, an HTLP [20] is a time-lock puzzle that allows the evaluation of a

circuit C over sets of puzzles (Z1, ..., Zn) in a homomorphic manner without needing

to know the secret messages (s1, ..., sn) contained within those puzzles. The output

of the evaluation, which is also a puzzle, contains the circuit output C(s1, ..., sn),

and the puzzle’s timing difficulty does not depend on the size of the evaluated circuit

C (Compactness). It is important to emphasize that maintaining the compactness of

20

the evaluation algorithm is an essential requirement for HTLP. If this requirement is

neglected, the simplistic approach of solving the puzzles (Z1, ..., Zn) and evaluating

C over the secrets would be sufficient. So, the work of [20] introduces the concept

of HTLPs and characterizes their security guarantees formally.

Definition 3.3.1. [20] Say C = {Cλ}λ∈N be a class of circuits and S is a finite

domain. A homomorphic time-lock puzzle is a tuple of four algorithms:

• pp ← HTLP.PSetup(1λ, T): a probabilistic algorithm that takes security pa-

rameter 1λ and a hardness parameter T as inputs and outputs public parameters

pp.

• Z ← HTLP.PGen(pp, s): a probabilistic algorithm that outputs a puzzle Z

encapsulating a solution s ∈ S.

• s ← HTLP.PSolve(pp, Z): a deterministic algorithm that takes a puzzle Z

and solves it to output a solution s.

• Z ′ ← HTLP.PEval(C, pp, Z1, ..., Zn): a probabilistic algorithm that takes a

set of n puzzles, evaluates a circuit C on these puzzles to output a puzzle Z ′.

Efficiency:

pp← HTLP.PSetup(1λ, T) can be computed in time poly(λ, logT) and

Z ′ ← HTLP.PEval(C, pp, Z1, ..., Zn) can be computed in time poly(λ, |C|).

Security:

As previously defined, the homomorphic time-lock puzzles’ security shares the same

theoretical concept as the classical time-lock puzzles. The security of both types of

puzzles depends on ensuring that the solution remains hidden from any adversaries

running in (parallel) time that are less than T. In this context, we will focus on a basic

version of the homomorphic time-lock puzzles where the countdown starts when the

public parameters become available. Formal requirements for the security and com-

pactness of the homomorphic time-lock puzzles are as follows:

21

Definition 3.3.2. [20] An HTLP scheme is secure with gap ϵ < 1 if there exists a

polynomial T̃ (·) such that for all polynomials T (.) ≥ T̃ (·) and every polynomial-size

adversary (A1, A2) = {(A1, A2)λ}λ∈N where the depth of A2 is bounded from above

by T ϵ(λ) there exists a negligible function µ(·) such that for all λ ∈ N it holds that

Pr

 b← A2(pp, Z, τ) :

(τ, s0, s1)← A1(1
λ)

pp← HTLP.PSetup(1λ,T(λ))

b←$ {0, 1}
Z ← HTLP.PGen(pp, sb)

 ≤
1

2
+ µ(λ),

and (s0, s1) ∈ S2.

Definition 3.3.3. [20] Let C = {Cλ}λ∈N be a class of circuits (along with their

respective representations). An HTLP scheme is compact for the class C if for all

λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and respective inputs (s1, ..., sn) ∈
Sn, all pp in the support of HTLP.PSetup(1λ, T), and all Zi in the support of

HTLP.PGen(pp, si) the following two conditions are satisfied:

• There exists a fixed polynomial p(·) such that |Z| = p(λ, |C(s1, ..., sn)|), where

Z ← HTLP.Eval(C, pp, Z1, ..., Zn).

• There exists a fixed polynomial p̃(·) such that the runtime of

HTLP.PEval(C, pp, Z1, ..., Zn) is bounded by p̃(λ, |C|).

Also, HTLP scheme is correct if the following conditions are satisfied:

• There exists a negligible function µ(.) such that

Pr [HTLP.PSolve(pp,HTLP.PEval(C, pp, Z1, ..., Zn)) ̸= C(s1, ..., sn)] ≤ µ(λ).

• There exists a fixed polynomial p(·) such that the runtime of

HTLP.PSolve(pp, Z) is bounded by p(λ, T).

G. Malavolta and S. A. K. Thyagarajan [20] developed three distinct but related con-

structions for homomorphic time-lock puzzles and subsequently explained how they

can be used in various practical settings. Through their research, they devised these

constructions and explored their potential real-world applications, shedding light on

the advantages and limitations of each method.

22

3.3.1 Linearly Homomorphic Time-lock Puzzles (LHTLP)

The group Z∗
N2 can be written as the product of the group generated by (1 +N) that

has order N and the group of N -th residues {xN : x ∈ Z∗
N} that has order φ(N).

When the tuple (N, x, x2T) where x is the random element of Z∗
N with Jacobi symbol

+1 is fixed for the setup phase, a linearly homomorphic HTLP can be computed as

(N, T, xr, (xN.2T)r · (1 +N)s) = (N, T, y, yN.2T · (1 +N)s)

where r is uniformly sampled from {1, ..., N2} whose distribution (modulo φ) is sta-

tistically close to sampling from {1, ..., φ}. It is correctly distributed, and the knowl-

edge of φ(N) is not needed to compute. The scheme is an HTLP for linear func-

tions, assuming the inherent sequentiality of squaring modulo N and other standard

intractability assumptions over hidden-order groups.

A linearly homomorphic time-lock puzzle over the ring (ZN ,+) is as follows [20]:

Setup:

• Takes two primes p = 2p′ + 1 and q = q′ + 1 such that p′ and q′ are primes and

computes N = pq.

• Takes uniform g̃ ←$ ZN
∗ and set g = −g̃2 mod N .

• Computes h = g2
T by reducing 2T mod φ(N)/2.

• LHTLP.PSetup(1λ, T)→ pp = (T,N, g, h).

Puzzle Generation:

• Chooses a uniform r ←$ {1, ..., N2} as the randomization factor.

• Computes u = gr mod N and v = hr.N · (1 +N)s mod N2.

• LHTLP.PGen(pp, s)→ Z = (u, v).

Puzzle Solving:

23

• Computes w = u2T mod N using repeated squaring and

s =
(v/(w)N mod N2)− 1

N

.

• LHTLP.PEval(pp, Z)→ s.

Evaluation:

• Computes ũ =
∏n

i=1 ui mod N and ṽ =
∏n

i=1 vi mod N2 for each (ui, vi) ∈
JN × ZN2 belongs to Zi’s.

• LHTLP.PEval(⊕, pp, Z1, ..., Zn)→ (ũ, ṽ).

Correctness [20]:

s̃ =
(ṽ/(w̃)N mod N2)− 1

N

=
(
∏n

i=1 vi/(
∏n

i=1 u
2T

i mod N)N mod N2)− 1

N

=
(
∏n

i=1 h
ri.N · (1 +N)si/(

∏n
i=1 h

ri mod N)N mod N2 − 1

N

=

∏n
i=1 h

ri.N(1 +N)si/
∏n

i=1 h
ri.N mod N2)− 1

N

=
((1 +N)

∑n
i=1 si mod N2)− 1

N

=
1 +N ·

∑n
i=1 si − 1

N
=

n∑
i=1

si.

(3.1)

Security depends on the sequential squaring, DDH over JN and DCR over Z∗
N2 as-

sumptions. The scheme is perfectly correct and satisfies the notion of randomness

homomorphism.

3.3.2 Multiplicatively Homomorphic Time-lock Puzzles

Given that the tuple (N, x, xT) is fixed in a setup phase, a puzzle to encapsulate a

secret s ∈ JN such that JN is the subgroup of Z∗
N whose elements have Jacobi symbol

+1 is generated as

(N, T, xr, (x2T)r · s)

24

for some uniformly chosen r.

A multiplicatively homomorphic time-lock puzzle over the ring (JN , ·) is as follows

[20]:

Setup:

• MHTLP.PSetup(1λ
′T)→ pp = (T,N, g, h) is the same with the

LHTLP.PSetup function.

Puzzle Generation:

• Chooses a uniform r ←$ {1, ..., N2} as the randomization factor.

• Generates u = gr mod N and v = hr · s mod N .

• MHTLP.PGen(pp, s)→ Z = (u, v).

Puzzle Solving:

• Computes w = u2T mod N using repeated squaring and s = v/w.

• MHTLP.PEval(pp, Z)→ s.

Evaluation:

• Computes ũ =
∏n

i=1 ui mod N and ṽ =
∏n

i=1 vi mod N for each (ui, vi) ∈
J2N belongs to Zi’s.

• MHTLP.PEval(⊗, pp, Z1, ..., Zn)→ (ũ, ṽ).

Correctness [20]:

s̃ =
ṽ

w̃
=

ṽ

ũ2T
=

∏n
i=1 vi∏n

i=1 u
2T
i

=

∏n
i=1 h

ri · si∏n
i=1 g

ri.2T
=

∏n
i=1 h

ri · si∏n
i=1 h

ri

=
n∏

i=1

si.

(3.2)

Security depends on the sequential squaring and DDH assumptions over JN .

25

3.3.3 Fully Homomorphic Time-lock Puzzles

Using linear and multiplicative homomorphic time-lock puzzles is limited to evaluat-

ing certain restricted function classes over private data. However, whether an HTLP

can be constructed for any polynomially-computable function remains unanswered,

and existing techniques have yet to be instrumental in this regard [20]. Constructing

homomorphic encryption from RSA groups has proven to be difficult, and as a re-

sult, the focus has shifted to constructions based on indistinguishability obfuscation

[17]. Although a scheme has been developed using this approach, it is considered

a possible result, and the challenging task of constructing HTLPs for any function

without obfuscation remains an open problem. The fully-homomorphic encryption

(FHE) scheme [20] blueprint can be used to construct a fully homomorphic time-

lock puzzle. Before constructing a fully homomorphic time-lock puzzle, first, we

need to define some primitives. Let,

1. (KGen,Enc,Dec, tKeyGen) be a trapdoor encryption scheme.

2. (Key,Puncture,PRF) be a puncturable PRF.

3. (PGen,PSolve) be a homomorphic time-lock puzzle.

4. piO and iO be obfuscators for probabilistic and deterministic circuits, respec-

tively.

5. Prog(sk,pk)(α, β) and MProg(sk0,k,k
′)(i) are circuits such that:

(a) Prog(sk,pk)(α, β):

α = (zα, cα)

β = (zβ, cβ)

sα ← Dec(sk, cα), sβ ← Dec(sk, cβ)

s = sα NAND sβ

z ← PGen(T, s)

c← Enc(pk, s)

return(z, c)

26

(b) MProg(sk0,k,k
′)(i) :

ri−1 ← PRF(k, i− 1)

ri ← PRF(k, i), r′i ← PRF(k′, i)

(pki−1, ski−1)← KeyGen(1λ; ri−1)

(pki, ski)← KeyGen(1λ, ri)

Pi ← Prog(ski−1,pki)

Λi ← piO(1p, Pi; r
′
i)

return(λi)

6. L be a super-polynomial function such that L(λ) = 2w(log(λ)).

A fully homomorphic time-lock puzzle [20] is as follows:

Setup:

• Takes key pairs (pk0, sk0)← KeyGen(1λ).

• Takes two PRF keys k, k′ ← Key(1λ).

• Obfuscates using iO the circuit MProgsk0,k,k
′
, i.e., take

MEvk ← iO(1p,MProg(sk0,k,k
′)) where the security parameter p = p(λ) for

obfuscation is an upper-bound on the size of MProg(sk0,k,k
′).

• FHTLP.PSetup(1λ, T)→ pp = (T, pk0,MEvk).

Puzzle Generation:

• Generates c ← Enc(pk0, s) and z ← PGen(T, s) where c is the ciphertext and

z is the puzzle.

• FHTLP.PGen(pp, s)→ Z = (z, c).

Puzzle Solving:

• Computes s← PSolve(z)

• FHTLP.PSolve(pp, Z)→ s.

27

Puzzle Evaluation:

• Evaluates C layer by layer. For iteration i ∈ {0, ..., l}, generate the evaluation

key for the layers as Λi ← MEvk(i).

• For each NAND gate g in this layer i, let α(g), β(g) be the puzzles of the values

of its input wires.

• Evaluate g homomorphically by computing γ(g)← Λi(α(g), β(g)) as the puz-

zle of the value of g’s output wire.

• FHTLP.PEval(C, pp, Z1, ..., Zn) → the puzzle generated in the last iteration

l.

Correctness: It is straightforward to establish the correctness of the overall system

by relying on the correctness of the underlying components.

Security depends on the security of µ-hiding trapdoor encryption scheme, indistin-

guishable obfuscators (piO, iO) for the class of S and circuits respectively, and the

puncturable PRF.

3.4 Applications of Homomorphic Time-Lock Puzzles

Malavolta and Thyagarajan [20] have comprehensively analyzed the application sce-

narios for homomorphic puzzles, highlighting their significance in various domains.

In particular, they have explored the use of linearly homomorphic puzzles for e-

voting, sealed bid auctions over blockchains and multi-party coin flipping, and mul-

tiplicatively homomorphic time-lock puzzles for multi-party contract signing. Con-

structing models for these scenarios has shed light on the difference between classical

time-lock puzzles (RSW) and homomorphic ones. These models serve as crucial tools

for understanding the practical implications of homomorphic puzzles in real-world

applications.

28

3.4.1 Linearly Homomorphic Time-Lock Puzzles on E-Voting

The authors present a protocol [20] for selecting a single candidate from m options

with n voters that involve two phases: voting and counting. The voting phase involves

each voter generating a vector of m linearly-homomorphic puzzles, where only the

j-th puzzle, corresponding to the voter’s preferred candidate, encodes 1 while the re-

maining puzzles encapsulate 0. The vectors are publicly posted on a blockchain, and

the final result is determined by summing up all vectors and opening the resulting m

puzzles during the counting phase. This protocol does not require a trusted authority

for tallying, and the computational effort remains constant regardless of the number

of voters. The authors also suggest that similar techniques can be used for sealed bid

auctions, although the resulting protocol currently requires fully-homomorphic time-

lock puzzles due to the circuit’s complexity [20]. The proposed approach improves

upon previous solutions that may require opening a large number of puzzles, making

it more efficient.

29

Algorithm 1 Electronic Voting Scheme [20]
1: Election Setup:

2: Generate pp← LHTLP.PSetup(1λ, T) and publish them so that they are acces-

sible to all the voters.

3: Voting Phase: To deciding to vote the j-th candidate Cj such that j ∈ {1, ...,m}
4: for each voter Vi do

5: Generate Zj′ ← LHTLP.PGen(pp, 0) for all j′ ∈ {1, ...,m}/j.

6: Generate Zj ← LHTLP.PGen(pp, 1).

7: Compute votei = (Z1, ..., Zm) and outputs votei.

8: end for

9: Counting Phase:

10: Collect (vote1, ..., voten) from all voters and parse each vote as votei =

(Z
(i)
1 , ..., Z

(i)
m)

11: for each candidate j ∈ {1, ...,m} do

12: Compute the puzzle Z̃j ← LHTLP.PEval(⊕, pp, Z(1)
j , ..., Z

(n)
j).

13: Count the votes received by j-candidate by vj ← LHTLP.PSolve(pp, Z̃j).

14: end for

15: Compute vj = max(v1, ..., vm).

16: Output j-th candidate as the winner of the election.

30

Figure 3.1: LHTLP Electronic Voting Scheme

The provided Figure 3.1 illustrates the proposed model for electronic voting, which

utilizes homomorphic time-lock puzzles to determine the winner of an election. Em-

ploying a "compute-then-solve" method shows that the computation of n puzzles is

required for winner selection. In contrast, the classical method of time-lock puz-

zles necessitates the solution of all Zj
i puzzles before computation and selection of

the winner can occur, resulting in n.m puzzle-solving computations. Based on this

analysis, it can be concluded that using homomorphic time-lock puzzles in real-life

31

election scenarios is significantly more efficient than the classical approach.

3.4.2 Multiplicatively Homomorphic Time-Lock Puzzles on Multi-Party Con-

tract Signing

Boneh and Naor addressed the problem of n mutually distrusting parties exchang-

ing signatures on a document with their protocol for fair exchange of signatures [7],

based on time-lock puzzles. In each round, each party generates a time-lock puzzle

of their signature and broadcasts it until all signatures are published. However, sup-

pose any party fails to broadcast its puzzle in any round. In that case, all other parties

must solve all the puzzles from the previous round to learn the signatures necessary

for the contract’s validity. To solve this issue, the authors propose using their mul-

tiplicatively homomorphic time-lock puzzles and RSA-aggregate signatures, which

allow homomorphic aggregation of signatures in QRN , where N is fixed. This tool

enables replacing the time-lock puzzle of Boneh and Naor with the multiplicatively

homomorphic construction so that in the case of any offline party, each other party

can homomorphically aggregate the signatures from the previous round and solve a

single time-lock puzzle.

The proposed solution for the problem of mutually distrusting parties jointly signing

a contract involves using multiplicatively homomorphic time-lock puzzles and RSA-

aggregate signatures. An aggregate signature scheme publicly combines signatures

over different messages and under different keys so that the digest remains verifiable.

In the proposed contract-signing protocol, each party generates a signature on contract

M and time-locks it with a timing hardness T. If all parties successfully broadcast

their time-lock puzzles, the protocol proceeds to the next iteration. Otherwise, each

party collects the puzzles from the previous iteration and generates the final puzzle,

which is solved to reveal the aggregated signature σaqq on M. The protocol proceeds

until Tl := 2 is reached. The public parameters of the Hohenberger-Waters signature

scheme [18] and MHTLP are generated in the setup phase. Each user generates a

key pair and enters the loop for generating signatures and time-lock puzzles.

32

Algorithm 2 Multi-Party Contract Signing [20]
1: Setup Phase:

2: Generate pp1 ← Setup(1λ, 1T) for the aggregate signature scheme and pp2 ←
MHTLP.PSetup(1λ, T1, ..., Tl) and broadcast it to all parties.

3: Key Generation Phase:

4: for each party Pi do

5: Execute (pki, ski)← KeyGen(pp1) to generate (pki, ski).

6: end for

7: Signing Phase:

8: for k = 1 to l do

9: for each party Pi do

10: Generate σ
(k)
i ← Sign(pp1, ski,M).

11: Time-lock the signature Z
(k)
i ← MHTLP.PGen(pp2, σ

(k)
i , Tk).

12: Broadcast the puzzle Z
(k)
i to all parties.

13: end for

14: Aggregation Phase:

15: if all parties have broadcast their puzzles or k = l then

16: Collect the puzzles (Z(k−1)
1 , ..., Z

(k−1)
n) from the (k − 1)-th iteration

17: Generate the final puzzle

18: Z(k−1) ← MHTLP.PEval(⊗, pp2, Z(k−1)
1 , ..., Z

(k−1)
n)

19: Solve the puzzle to obtain σagg ← MHTLP. Solve(pp2, Z
(k−1)) on M .

20: Output (M,σagg).

21: end if

22: end for

33

34

CHAPTER 4

TIMED SIGNATURES

In the ensuing chapter, our objective is to comprehensively delineate timed commit-

ment schemes and timed signatures in chronological order. The underlying construc-

tions rely on time-lock puzzles expounded in the preceding chapter. Primarily, we

shall explain Boneh and Naor’s methodologies [7], premised on the repeated squaring

time-lock puzzles. Following this, we shall elucidate Garay and Jakobsson’s Timed

Signatures [15], which are grounded on the principle of Boneh and Naor’s timed

signatures. Lastly, we shall present the verifiable timed signatures [30] predicated on

homomorphic time-lock puzzles. By adopting this systematic approach, we aim to

proffer a thorough and rigorous exposition of these essential concepts.

Initially, we present the precise definition of commitment schemes, as the subsequent

sections are predicated upon this fundamental concept.

Definition 4.0.1. A commitment scheme is a cryptographic primitive that allows one

to commit to a chosen value while keeping it hidden from others, with the ability to

reveal the committed value later. It consists of two phases:

1. Commitment Phase: A value is chosen and committed to (at the end of which

the sender is bound to the value).

2. Reveal Phase: The sender reveals the value to the receiver.

35

4.1 Boneh and Naor’s Timed Signature Scheme

In 2000, D. Boneh and M. Naor introduced the notion of timed commitments [7] in

which a potential forced opening phase permits the receiver to recover the commit-

ted value without the help of the committer. Then, they construct a timed signature

scheme analogously to their timed commitment scheme, which resists parallel attacks

by relying on modular exponentiation.

Contribution:

• In 1995, Damgard [11] proposed a well-designed pure two-party contract sign-

ing protocol (without a trusted third party). However, Damgard’s protocol re-

leases the signature bit-by-bit and is not resistant to parallel exhaustive search

attacks. Boneh and Naor designed a two-party contract signing protocol with-

out this deficiency.

• The authors used a similar function with RSW’s time-lock puzzles. But, as we

mentioned before, in RSW’s settings, we do not have measures for the desired

time of verification. Boneh and Naor worked for this deficiency.

Definition 4.1.1. A timed commitment scheme of Boneh and Naor [7] is as follows:

1. Commit phase: To commit to a string S ∈ {0, 1}λ, the committer and the

verifier execute a protocol whose outcome is a commitment string C, which is

given to the verifier.

2. Open phase: Later, the committer may reveal the string S to the verifier. They

execute a protocol so that at the end of the protocol, the verifier has proof that

S is the committed value.

3. Forced open phase: If the committer refuses to execute the open phase and does

not reveal S, then the forced-open algorithm takes the commitment string C as

input and outputs S and a proof that S is the committed value. The algorithm’s

running time is at most T .

36

Figure 4.1: Schema for Timed Commitment Scheme

It should satisfy three security properties:

Binding: During the open phase, the committer cannot convince the verifier that

C is a commitment to a different S.

Soundness: [7] At the end of the commit phase, the verifier is convinced that, given

C, the forced open algorithm will produce the committed string S in time T .

Privacy: [7] Every PRAM algorithm whose running time is at most t such that

t < T) on polynomially many processors will succeed in distinguishing s from a ran-

dom string, given the transcript of the commit protocol as input, with an advantage at

most ϵ. This requirement ensures that even an adversary equipped with a highly paral-

lel machine must spend at least time t to open the commitment (with high probability)

forcibly.

A timed signatures scheme enables the committer to give the verifier a signature s

on a message M in two steps. The committer commits to the signature s, and the

verifier accepts the commitment. After a time, the committer completely reveals the

signature S to the verifier. If the committer does not reveal the signature, the verifier

can spend time T to forcibly retrieve the signature from the commitment. As before,

the committer is assured that after time t (t < T), the verifier will not be able to

retrieve the signature with probability more than ϵ. For a timed commitment scheme;

37

• During the commit phase, the committer must convince the verifier that the

forced open algorithm will successfully retrieve the committed value. It must

be done without actually running the forced open algorithm. Boneh and Naor

use an efficient zero-knowledge protocol in the commit phase for the following

protocol.

• An adversary with thousands of machines cannot forcibly open the commitment

much faster than a legitimate party with only one machine.

4.1.1 Boneh and Naor’s Timed Commitment Scheme: [7]

Setup:

• Let T = 2k ∈ Z and security parameter n ∈ Z+.

• The committer takes n-bit random primes p1 = p2 = 3 mod (4) as private

keys.

• He computes N = p1.p2 and φ(N) = (p− 1).(p2 − 1) then publishes < N >.

Commit Phase:

The committer wants to commit to a message M of length l. The committer performs

the following:

• Picks h ∈R ZN .

• Computes g = h(
∏r

i=1 q
n
i) mod N where qi < B for some bound B and all of

them are prime.

• Computes a = 22
k

mod φ(N) using repeated squaring and set u = ga mod N .

• Hides the bits of M by XORing them with the LSB’s of succesive square roots

of u mod N . Sets Si = Mi ⊕ lsb(g2
(2k−i)

mod N) and let S = S1...Sl ∈
{0, 1}l.
Outputs the commitment string C =< h, g, u, S > and sends to the verifier.

38

When the verifier takes h and g, he verifies that g is constructed properly from h. The

verifier is assured that the order of g in Z∗
N is not divisible by any prime less than B.

The committer must convince the verifier that u = g2
2k

mod N .

Convincing Step (Zero-Knowledge):

• The committer constructs W =< g2, g4, g16, g256, ..., g2
2i

, ..., g2
2k

> mod N

and sends to the verifier.

• For each i, the committer proves in zero-knowledge to the verifier that the triple

(g, bi−1, bi) is a triple of the form (g, gx, gx
2
) for some x.

• By verifying that the last element in W is equal to u the verifier is assured that

indeed u = g2
2k

mod N .

• Each of these k proofs take four rounds and they can all be done in paral-

lel. These proofs are based on a classic zero-knowledge proof that a tuple

< g,A,B,C > is a Diffie-Hellman tuple.

Proving integrity of W : Let q be the order of g in Z∗
N and R be a security parameter.

• The verifier picks c1, ..., ck ∈R {0, ..., R} and sends ci’s using any regular com-

mitment scheme.

• The committer picks d1, ..., dk ∈R Zq. He computes for all i ∈ {1, ..., k},
zi = gdi and wi = bdii−1. He sends the pairs < zi, wi > to the verifier.

• The verifier reveals all ci’s.

• The committer computes yi = ci.2
2i−1

+ di mod q for all i values and sends

to the verifier.

• The verifier check for all i, gyi .b−ci
i−1 = zi and byii−1.b

−ci
i = wi.

Open Phase: The committer sends v′ = h2(2
k−l) mod N to the verifier and the

verifier performs the following:

• Computes v = (v′)
∏r

i=1 q
n
i mod N and ensures that v has odd order.

39

• Verifies v2l = u mod N (v is in the subgroup generated by g since it has order

and the 2l’th root o u).

• Constructs the l-bit Blum-Blum-Shub pseudo-random sequence R ∈ {0, 1}l

starting at v.

• Sets for i = {1, ..., l}, Ri to be the least significant bit of v2l−i .

• M = R⊕ S.

M is the only possible outcome of the open phase protocol and the protocol satisfies

the binding property. It is proven by Boneh and Naor in [7].

Forced Open Phase:

• The verifier computes v = g2
(2k−l)

mod N using (2k− l) squarings in modulo

N .

The above timed commitment scheme takes T = 2k modular exponentiations to re-

trieve the committed string forcibly. So, the time notion for the timed commitment

scheme is the T value. The commit phase takes O(k) modular exponentiations. The

forced open algorithm takes a few hours or days depending on k ∈ [30, 50].

Security of the timed commitment scheme depends on the generalized BBS assump-

tion. The protocol satisfies soundness, zero-knowledge and binding properties.

4.1.2 Boneh and Naor’s Timed Signature Scheme:

Let (σ, V,G) be a signature scheme where σ takes a message and a private key and

generates a signature, V takes a signature and a public key and verifies the signature

and G is a public and private key pair generator. The timed signature scheme (T, t, ϵ)

is as follows:

40

Figure 4.2: Schema for Timed Signature Scheme

An abuse of the protocol may occur since once the commit phase is done, the verifier

can convince a third party that the signer is about to give him a signature on M .

Indeed, the value Sig in the commitment string given to the verifier could have only

come from the signer. Boneh and Naor also designed a contract signing protocol

by constructing a timed signature so that after the commit phase, the verifier cannot

convince a third party that he has been talking to the signer.

4.2 Garay and Jakobsson’s Timed Signatures

J. A. Garay and M. Jakobsson discuss a method for releasing digital signatures at a

specific time and show how to implement this for RSA, Schnorr, and DSA signa-

tures in 2002 [15]. Once released, these types of signatures cannot be distinguished

from those not released at a specific time, making the process transparent to anyone

41

observing the end result. The notion and construction of Boneh and Naor’s timed

commitments is the starting point for Garay and Jakobsson. As RSW’s time-lock

puzzles and Boneh and Naor’s structures, iterated squaring is used as a solution for

parallelization of the problem-solving.

Contribution:

• Reuse of the proposed timed structure and achieves lower session costs than

Boneh and Naor’s by introducing the concept of a reusable time-line.

• The robust timed release of standard signatures where the committed value

from the time-line as a "blinding" factor for the signature.

Now, first, we present the notion of Garay and M. Jakobsson’s time-line, then the

proposed time-line commitment scheme, time-line signature scheme, and the versions

of the robust timed release of standard signatures.

Definition 4.2.1. [15] A time-line is a vector of elements, where each element is

obtained by iterated squaring of the previous element. Its endpoints represent the

time-line, and its commitment corresponds to a value on the line. This value can be

computed by iterated squaring of one of the values representing the time-line. Derived

time-lines are obtained by "shifting" of a master time-line. Derived time-lines are

backward compatible.

Definition 4.2.2. [15] Let N be a Blum integer and g an element of large odd order in

ZN∗. A time-line is a partial description of a BBS sequence, given by the subsequence

{g22
i

}ki=0 mod N . We call the the value g22
k−1 the time-line’s hidden value. A value

lies on a time-line if obtained by iterated squaring of the time-line’s start value.

Definition 4.2.3. [15] A (T, t, ϵ) time-line commitment is a scheme in which the

committer gives the receiver a timed commitment to a hidden value. At a later time,

she can reveal this value and prove that it’s the correct one. However, if the committer

fails to reveal it, the receiver can spend time T and retrieve it. It should also satisfy

binding, soundness, and privacy properties.

42

4.2.1 Garay and Jakobsson’s Time-Line Commitment Scheme:

Setup:

• Let T = 2k ∈ Z and the security parameter n ∈ Z+.

• The committer takes n − bit random primes p1 = p2 = 3 mod 4 as private

keys.

• He computes N = p1.p2 and publishes < N >.

• He picks the master time-line’s generator g as in first two steps of Boneh and

Naor’s Timed Commitment Scheme’s commit phase.

The committer performs the following steps to generate the master-line:

• Computes Mi = g2
2i

mod N , 0 ≤ i ≤ k, sets m1st = g2
2k−1

mod N and

m2nd = g2
2k−2

mod N . If the party knows φ(N) this computation can be

performed efficiently by repeated squaring ai = 22
i
mod φ(N) and then Mi =

gai mod N .

• Shows that each < g,Mi,Mi+1 >, 0 ≤ i ≤ k − 1 is of the form < g, gx, gx
2
>

for some x (proof of Mi = g2
2i

mod N , for 0 ≤ i ≤ k).

• Outputs {Mi}ki=0, m1st and m2nd, along with the above non-interactive proof.

Before using the master time-line, any party checks that m2nd
2 = m1st mod N ,

m1st
2 = Mk mod N .

Each of these k proofs take four rounds and they can all be done in parallel. These

proofs are based on a classic zero-knowledge proof that a tuple is a Diffie Hellman

tuple as in the case of Boneh and Naor’s Timed Commitment Scheme.

Commit phase:

The committer performs the following steps:

• Picks at random α ∈ Zφ′(N) where φ′(N) = φ(N) is used if known otherwise,

φ′(N) = ⌊N − 2
√
N⌋.

43

• Computes the new time-line: f = gα, Rk−1 = (Mk−1)
α, raux = (m2nd)

α,

r = (m1st)
α, and Rk = (Mk)

α mod N . Outputs h, Rk−1 and Rk and keeps r

and raux secret. r is the new time-line’s hidden value.

• Proves that the new time-line is correctly derived from the master time-line

loggf = logMk−1
Rk−1 = logMk

Rk = (α).

He uses equality of discrete logs for the proof [8], [9], [2].

Open phase:

• The committer sends α and h′ = h2(2
k−1) to the verifier.

• The verifier computes r = (h′α)
∏p

i=1 q
n
i mod N and checks that f = gα

mod N and r2 = Rk mod N .

Forced open phase:

• The verifier computes r from Rk−1 by repeated squaring in modulo N using

2k − 2 operations.

Security of the time-line commitment scheme depends on DLP and the generalized

BBS assumption.

4.2.2 Garay and Jakobsson’s Time-Line Signature Scheme:

Let Sig(m) denote the signature on message m, generated with the signer’s public

key. The timed signature (T, t, ϵ) is as follows:

Commit Phase:

The signer performs (T, t, ϵ) time-line commitment scheme and blinds the signature

with r. She gives the blinded signature and the time-line commitment TL(r) with

the proofs of well-formedness of the time-line, uniqueness of the blind factor, and

correctness of the blinding operation to the verifier.

44

Open Phase:

The signer performs open phase algorithm to reveal r. The verifier unblinds the sig-

nature with r and gets Sig(m).

Forced Open Phase:

The verifier performs forced open phase algorithm of time-line commitment scheme,

retrieves r and unblinds the signature.

Let N be a publicly known modulus, N ′ = N2 be a second auxiliary modulus and

g′ = N + 1. The order of the subgroup generated by g′ equals to N . We will use g′

and N ′ to perform auxiliary commitments in the following three signature schemes.

For the following timed signature schemes, we assume that the signer and the verifier

have already done a time-line commitment TL(r) before the commitment phase.

4.2.3 Timed RSA Signature Scheme:

Setup:

Let n be an RSA modulus, m be the message to be signed, (e, n) be the signer’s

public key, and d his secret key where med = m mod n for all values m ∈ Zn. The

signer’s signature on a hashed message m is s = md mod n.

Commit Phase:

The signer performs the following:

• Computes s = md mod n.

• Blinds the signature by s̃ = s1/r mod n where r is the time-line’s hidden

value, and sends the pair (m, s̃) to the verifier.

• Computes

baux = g′
raux mod N ′,

b = g′
r

mod N ′,

B = g′
Rk mod N ′.

45

and proves that

logg′baux = logbauxb(= raux)

using the properties of equality of discrete logs

logg′b = logbB(= R).

• The verifier computes X = s̃e.

• The signer proves that logXm = logg′b(= r).

Open and Forced Open Phases:

The verifier obtains r from the signer or from the time-line forced open algorithm and

unblinds the signature by computing s = s̃r mod n.

The committer has to compute s1/r mod n in the blinding step. It raises the signature

s to the value 1/r mod φ(n). If the committer is also the signer, he knows φ(n).

But, if he is not, he can not compute φ(n). This scheme does not allow one party to

commit to a signature generated by another party.

4.2.4 Timed Schnorr Signature Scheme:

Setup:

Let ḡ be a generator of a group of size q̄ and let all computation be modulo p̄ where

q̄ | p̄ − 1. Let x̄ ∈ Zq̄ be the secret key and ȳ = ḡx̄ be the public key. The signer

selects k̄ ∈R Zq̄ and computes ρ̄ = ḡk̄ mod p̄ and s̄ = k̄ + x̄h(m, ρ̄) mod q̄ where

m is the message to be signed.

Commit Phase:

The signer knows a signature (ρ̄, s̄) on a message m known by the committer and the

receiver. Unlike Timed RSA Signature Scheme, the committer and the signer do not

need to be the same parties.

• Let r be the blinding factor. Let s̃ = s̄/r mod q̄ be the blinded signature, and

g̃ = ḡr mod p̄ be the blinded generator. The committer outputs (g̃, ρ̄, s̃),

46

• The committer computes

baux = g′
raux mod N ′,

b = g′
r

mod N ′,

B = g′
Rk mod N ′.

and proves that

logg′baux = logbauxb(= raux)

using the properties of equality of discrete logs

logg′b = logbB(= R).

• The verifier checks that g̃s̃ = ρyh(m,ρ̄) mod p̄.

• The committer proves that logḡg̃ = logg′b(= r).

Open and Forced Open Phases:

The verifier obtains r from the signer or from the time-line forced open algorithm and

unblinds the signature by computing s̄ = s̃r mod q̄. He outputs (m, ρ̄, s̄).

4.2.5 Timed DSA Signature Scheme:

Setup:

Let m be the hashed message to be signed. The signer selects k̄ ∈R Zq̄ and computes

ρ̄ = ḡk̄ mod p̄, λ̄ = ρ̄ mod q̄ and s̄ = k̄−1(m + x̄λ̄) mod q̄. Like the Timed

Schnorr Signature Scheme, the committer and the signer do not need to be the same

parties. Assume that he knows ρ̄.

Commit Phase:

The committer knows the signature (ρ̄, s̄) on message m. The committer and the

receiver perform the following:

• Let r be the blinding factor. Let ρ̃ = ρ̄r mod p̄ and s̃ = s̄/r mod q̄. The

committer outputs (ρ̃, ρ̄, λ̄, s̃),

47

• The committer computes

baux = g′
raux mod N ′,

b = g′
r

mod N ′,

B = g′
Rk mod N ′.

and proves that

logg′baux = logbauxb(= raux)

using the properties of equality of discrete logs

logg′b = logbB(= R).

• The verifier checks that ρ̃s̃ = ḡmȳλ̄ mod p̄.

• The committer proves that logρ̄ρ̃ = logg′b(= r).

Open and Forced Open Phases:

The verifier obtains r from the signer or from the time-line forced open algorithm and

unblinds the signature by computing s̄ = s̃r mod q̄. He outputs (m, λ̄, s̄).

Security of the Timed RSA Signature Scheme, Timed Schnorr Signature Scheme,

and Timed DSA Signature Scheme based on the hardness of DLP and the generalized

BBS assumption.

4.3 Verifiable Timed Signature Scheme

The first Verifiable Timed Signature (VTS) and Verifiable Timed Commitment scheme

(VTC) was presented by S. Thyagarajan et al. in 2020 [30]. A VTS scheme allows

a signature on a known message to be locked for a specific amount of time T , such

that after a sequential computation has been performed for time T , anyone can extract

the signature from the time lock. Verifiability ensures that anyone can publicly verify

that a time lock contains a valid signature on the message without solving it and that

the signature can be obtained by solving it for time T . That means VTS can be con-

sidered a timed version of verifiably encrypted signatures without requiring a trusted

48

third party to retrieve the signature.

The design is an efficient cut-and-choose protocol based on homomorphic time-lock

puzzles to prove the validity of a signature within a time-lock puzzle that presents an

efficient range proof protocol that significantly improves upon previous proposals in

terms of proof size, which is also of independent interest. Homomorphic time-lock

puzzles reduce the number of puzzles to only one puzzle. Also, they satisfy the notion

of randomness homomorphism, which was expounded upon in great detail in Chapter

3.3. Also, threshold secret sharing [28] is used in the design, and the construction is

secure against parallel computations.

Contribution:

• Chapter 4.2 of a source discusses the work of Garay and Jakobsson (and later

Garay and Pomerance [16]), who proposed a way to create special-purpose

zero-knowledge proofs that prove to a verifier that a time-lock puzzle contains a

valid signature. However, their method requires both the prover and the verifier

to locally store a "time-line" list of group elements whose length equals the

number of timed checkpoints, which has not yet been implemented. The new

scheme implements a difference in using an RSA modulus N for setup, which

can be shared among all users in the system or sampled by the signer depending

on the specific application.

• Banasik, Dziembowski, and Malinowski [1] have presented a method called

"cut and choose" to verify that a time-lock puzzle contains a valid signing key.

In this technique, the prover sends puzzles with signing keys for a public keys,

and the verifier asks to open a − b of them. If the opened puzzles are valid,

the verifier solves the remaining ones. The verifier can then post a transaction

using a multisig script where b-1 of the keys belongs to the verifier. But, the

VTS scheme requires solving a single puzzle and posting a transaction with a

single signature for a corresponding public key.

We will now introduce the concept of verifiable timed signatures and different varia-

tions of robust timed releases for standard signatures.

49

Definition 4.3.1. [30] A verifiable timed signature (VTS) for a signature scheme∏
= (KeyGen, Sign,Verify) is a tuple of four algorithms

(Commit,Vrfy,Open,ForceOp) such that:

1. (C, π) ← Commit(σ, T): Takes as input a signature σ (generated using Π ·
Sign(sk,m)) and hiding time T and outputs a commitment C and a proof π.

2. 0/1 ← Vrfy(pk,m,C, π): Takes as input a public key pk, a message m, a

commitment C of hardness T and a proof π and outputs 1 if σ embedded in c

is a valid signature on the message m with respect to the public key pk that is

Π · Verify(pk,m, σ) = 1. Otherwise, it outputs 0.

3. (σ, r)← Open(C): Takes as input a commitment C and outputs the committed

signature σ and the randomness r used in generating C.

4. σ ← ForceOp(C): Takes as input the commitment C and outputs a signature

σ.

Soundness: [30]

A VTS scheme for a signature scheme Π = (KeyGen, Sign,Verify) is sound if there

is a negligible function negl such that for all probabilistic polynomial time adversaries

A and all λ ∈ N, we have:

Pr

 b1 = 1 ∧ b2 = 0 :

(pk,m,C, π, T)← A1λ

(σ, r)← ForceOp(C)

b1 := Vrfy(pk,m,C, π)

b2 := Π := Verify(pk,m, σ)

 ≤ negl(λ).

Definition 4.3.2. [30] A VTS is simulation-sound if it is sound even when the prover

has access to simulated proofs for (possibly false) statements of his choice; i.e., the

prover must not be able to compute a valid proof for a fresh false statement of his

choice.

Privacy: [30]

50

A VTS scheme for a signature scheme Π = (KeyGen, Sign,Verify) is private if there

exists a PPT simulator S, a negligible function negl, and a polynomial T̃ such that

for all polynomials T > T̃ , all PRAM algorithms A whose running time is at most

t < T , all messages m ∈ {0, 1}∗, and all λ ∈ N it holds that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A(pk,m,C, π) = 1 :

(pk, sk)← Π ·KeyGen
(
1λ
)

σ ← Π. Sign(sk,m)

(C, π)← Commit(σ,T)


−Pr

A(pk,m,C, π) = 1 :
(pk, sk)← Π.KeyGen

(
1λ
)

(C, π,m)← S(pk,T)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Definition 4.3.3. [30] Lets say (LHTLP.PSetup,LHTLP.PGen,LHTLP.PSolve,

LHTLP.PEval) is an LHTLP. The public coin interactive zero-knowledge proofs for

the language L are described as follows:

L := {stmt = (pk,m, Z, T) : ∃wit = (σ, r) s.t

(Verify(pk,m, σ) = 1) ∧ (Z ← LHTLP.PGen(T, σ; r))}.

The Commit algorithm embeds the signatures inside the time-lock puzzles and uses

the zero-knowledge proof system for L to prove the validity of the time-locked sig-

nature. Say (ZKsetup,ZKprove,ZKverify) be a a zero-knowledge proof system for

the language Lrange defined as follows:

Lrange := {stmt = (Z, a, b, T) : ∃wit = (σ, r) s.t

(σ ∈ [a, b]) ∧ (Z ← LHTLP.PGen(T, σ; r))}.

For all the following verifiable timed signature schemes, we have some common as-

sumptions. Let n be the security parameter and take t as n/2 + 1. Also, |σ| = λ be

the maximum number of bits of the signature σ. The hash function H ′ is defined as

H ′ : {0, 1}∗ → I ⊂ [n] where |I| = t−1. We assume that ForceOp algorithm solves

in parallel ñ = (n− t+ 1) puzzles.

51

4.3.1 VT-BLS Signatures

Let (G0,G1,Gt) be a bilinear group of prime order q where q is a λ-bit prime. Let e

be an efficiently computable biliniear pairing e : G0×G1 → GT , where g0 and g1 are

generators of G0 and G1 respectively. Let H be a hash function H : {0, 1}∗ → G1.

BLS construction and VT-BLS protocol [30] are as follows:

• (pk, sk) ← KeyGen(1λ): Chooses α ← Zq, set h ← gα0 ∈ G0 and outputs

pk := h and sk := α.

• σ ← Sign(sk,m) : Outputs σ := H(m)sk ∈ G1.

• 0/1← Verify(pk,m, σ) : If e(g0, σ) = e(pk, H(m)), then outputs 1 and other-

wise output 0.

Setup:

1. Takes 1λ as the input.

2. Runs ZKsetup(1λ) to generate crsrange.

3. Generates the public parameters pp← LHTLP.PSetup(1λ, T).

4. Outputs crs := (crsrange, pp).

Commit and Prove:

1. Takes (crs, wit) as the input.

2. Parses wit := σ, crs := (crsrange, pp), pk as the BLS public key, and m as the

message to be signed.

3. For all i ∈ [t−1] samples a uniform αi ← Zq and set σi := H(m)αi ·hi := gαi
0 .

4. For all i ∈ {t, ..., n} computes

σi =

(
σ∏

j∈[t−1] σ
lj(0)
j

)li(0)
−1

, hi =

(
pk∏

j∈[t−1] h
lj(0)
j

)li(0)
−1

where li(·) is the i− th Lagrange polynomial basis.

52

5. For i ∈ [n], generates puzzles with corresponding range proofs as

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, σi; ri)

πrange,i ← ZKprove(crsrange, (Zi, 0, 2
λ, T), (σi, ri)).

6. Computes I ← H ′(pk, (h1, Z1, πrange,1), ..., (hn, Zn, πrange,n)).

7. Outputs C := (Z1, ..., Zn, T) and π := ({hi, πrange,i}i∈[n], I, {σi, ri}i∈I).

Verification:

1. Takes (crs, pk,m,C, π) as the input.

2. Parses C := (Z1, ..., Zn, T), π := ({hi, πrange,i}i∈[n], I, {σi, ri}i∈I) and

crs := (crsrange, pp).

3. If any of the following conditions is satisfied, outputs 0; else, outputs 1:

(a) There exists some j /∈ I such that
∏

i∈I hi
li(0) · hj

lj(0) ̸= pk.

(b) There exists some i ∈ [n] such that

ZKverify(crsrange, (Zi, 0, 2
λ, T), πrange,i) ̸= 1.

(c) There exists some i ∈ I such that Zi ̸= LHTLP.PGen(pp, σi; ri) or

e(g0, σi) ̸= e(hi, H(m)).

(d) I ̸= H ′(pk, (h1, Z1, πrange,1), ..., (hn, Zn, πrange,n)).

Open Phase:

Outputs (σ, {ri}i∈[n]).

Force Open Phase:

1. Takes as input C := (Z1, ..., Zn, T).

2. Runs σi ← LHTLP.PSolve(pp, Zi) for i ∈ [n] to obtain all signatures. Since

t−1 puzzles are already opened by the committer, this only means that ForceOp

has to solve only (n− t+ 1) puzzles.

3. Outputs σ :=
∏

j∈[t](σj)
lj(0) where wlog., the first t signatures are valid shares.

53

4.3.2 VT-Schnorr Signatures

The Schnorr signature scheme is defined over a cyclic group G of prime order q with

generator g and uses a hash function H : {0, 1}∗ → Zq. Schnorr construction and

VT-Schnorr protocol [30] are as follows:

• (pk, sk)← KeyGen(1λ): Chooses x← Zq, set sk := x and pk := gx.

• σ ← Sign(sk,m; r) : Samples a randomness r ← Zq to computes R := gr, c :=

H(gx, R,m), s := r + cx and outputs σ := (R, s).

• 0/1← Verify(pk,m, σ) : Parses σ := (R, s) and then computes c := H(pk, R,m)

and if gs = R · pkc outputs 1, otherwise outputs 0.

Setup:

1. Takes 1λ as input.

2. Runs ZKsetup(1λ) to generate crsrange.

3. Generates the public parameters pp← LHTLP.PSetup(1λ, T).

4. Outputs crs := (crsrange, pp).

Commit and Prove:

1. Takes (crs, wit) as input.

2. Parses wit := σ = (R, s), crs := (crsrange, pp), pk as the Schnorr public key,

and m as the message to be signed.

3. For all i ∈ [t−1] samples a uniform pair (xi, ki)← Zq and set shi := gxi
i , Ri :=

gki and si := ki + cxi where c = H(pk, R,m).

4. For all i ∈ {t, ..., n} computes

si =

(
s−

∑
j∈[t−1]

sj · lj(0)

)
· li(0)−1, hi =

(
pk∏

j∈[t−1] h
lj(0)
j

)li(0)
−1

,

54

Ri =

(
R∏

j∈[t−1] R
lj(0)
j

)li(0)
−1

,

where li(·) is the i− th Lagrange polynomial basis.

5. For i ∈ [n], generates puzzles with corresponding range proofs as (|σ| = λ) is

the max number of bits of λ) :

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, si; ri)

πrange,i ← ZKprove(crsrange, (Zi, 0, 2
λ, T), (si, ri))

.

6. Computes I ← H ′(pk, R, (h1, R1, Z1, πrange,1), ..., (hn, Rn, Zn, πrange,n)).

7. Outputs C := (R,Z1, ..., Zn, T) and π := ({hi, Ri, πrange,i}i∈[n], I, {si, ri}i∈I).

Verification:

1. Takes (crs, pk,m,C, π) as input.

2. Parses C := (R,Z1, ..., Zn, T), π := ({hi, Ri, πrange,i}i∈[n], I, {si, ri}i∈I) and

crs := (crsrange, pp).

3. If any of the following conditions is satisfied, outputs 0; else, returns 1:

(a) There exists some j /∈ I such that
∏

i∈I hi
li(0) ·hj

lj(0) ̸= pk or
∏

i∈I Ri
li(0) ·

Rj
lj(0) ̸= R.

(b) There exists some i ∈ [n] such that Z Kverify(crsrange, (Zi, 0, 2
λ, T), πrange,i)

̸= 1.

(c) There exists some i ∈ I such that Zi ̸= LHTLP.PGen(pp, si; ri) or

gsi ̸= Ri · hc
i .

(d) I ̸= H ′(pk,R, (h1, R1, Z1, πrange,1), ..., (hn, Rn, Zn, πrange,n)).

Open Phase:

Outputs ((R, s), {ri}i∈[n]).

Force Open Phase:

55

1. Takes C := (R,Z1, ..., Zn, T) as input.

2. Runs si ← LHTLP.PSolve(pp, Zi) for i ∈ [n] to obtain all signatures. Since

t−1 puzzles are already opened by the committer, this only means that ForceOp

has to solve only (n− t+ 1) puzzles.

3. Outputs (R, s :=
∑

j∈[t](sj) · lj(0)) where wlog., the first t signatures are valid

shares.

4.3.3 VT-ECDSA Signatures

ECDSA signature has a non-linear verification, unlike in Schnorr. Consequently,

unlike VT-BLS and VT-Schnorr, the public key is not secretly shared in VT-ECDSA.

The ECDSA signatures scheme is defined over an elliptic curve group G of prime

order q with base point(generator) g and uses a hash function H : {0, 1}∗ → Zq.

ECDSA construction on VT-ECDSA protocol [30] is as follows:

• (pk, sk)← KeyGen(1λ): Chooses x← Zq, set sk := x and pk := gx.

• σ ← Sign(sk,m; r) : Samples an integer k ← Zq and computes c ← H(m).

Let (rx, ry) := R = gk, then set r := rx mod q and s := (c+ rx)/k mod q.

Output σ := (r, s).

• 0/1 ← Verify(pk,m, σ) : Parses σ := (r, s) and computes c := H(m) and

returns 1 if and only if (x, y) = (gc, hr)s
−1 and x = r mod q. Otherwise,

output 0.

Setup:

1. Takes 1λ as input.

2. Runs ZKsetup(1λ) to generate crsrange.

3. Generates the public parameters pp← LHTLP.PSetup(1λ, T).

4. Outputs crs := (crsrange, pp).

56

Commit and Prove:

1. Takes (crs, wit) as input.

2. Parses wit := σ = (r, s), crs := (crsrange, pp), pk as the ECDSA public key,

and m as the message to be signed.

3. Defines R := (x, y) = (gc, hr)s
−1 and B = gc · hr, where c = H(m).

4. For all i ∈ [t− 1] samples a uniform pair si ← Zq and set Ri := Bsi .

5. For all i ∈ {t, ..., n} computes

si =

(
s−1 −

∑
j∈[t−1]

sj · lj(0)

)
· li(0)−1, Ri =

(
R∏

j∈[t−1] R
lj(0)
j

)li(0)
−1

,

where li(·) is the i− th Lagrange polynomial basis.

6. For i ∈ [n], generates puzzles with corresponding range proofs as (|σ| = λ) is

the max number of bits of λ) :

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, si; ri)

πrange,i ← ZKprove(crsrange, (Zi, 0, 2
λ, T), (si, ri).)

7. Computes I ← H ′(pk, r, R, (R1, Z1, πrange,1), ..., (Rn, Zn, πrange,n)).

8. Outputs C := (r, R, Z1, ..., Zn, T) and π := ({Ri, πrange,i}i∈[n], I, {si, ri}i∈I).

Verification:

1. Takes (crs, pk,m,C, π) as input.

2. Parses C := (r, R, Z1, ..., Zn, T), π := ({Ri, πrange,i}i∈[n], I, {si, ri}i∈I) and

crs := (crsrange, pp).

3. If any of the following conditions is satisfied, outputs 0; else, returns 1:

(a) It holds that x ̸= r mod q where (x, y) := R.

(b) There exists some j /∈ I such that
∏

i∈I Ri
li(0) ·Rj

lj(0) ̸= R.

57

(c) There exists some i ∈ [n] such that ZKverify(crsrange, (Zi, 0, 2
λ, T), πrange,i)

̸= 1.

(d) There exists some i ∈ I such that Zi ̸= LHTLP.PGen(pp, si; ri) or

Ri ̸= (gc · hr)si .

(e) I ̸= H ′(pk, r, R, (R1, Z1, πrange,1), ..., (Rn, Zn, πrange,n)).

Open Phase:

Outputs ((r, s), {ri}i∈[n]).

Force Open Phase:

1. Takes C := (r, R, Z1, ..., Zn, T) as input.

2. Runs si ← LHTLP.PSolve(pp, Zi) for i ∈ [n] to obtain all signatures. Since

t−1 puzzles are already opened by the committer, this only means that ForceOp

has to solve only (n− t+ 1) puzzles.

3. Outputs (r, s :=
∑

j∈[t](sj) · lj(0)) where wlog., the first t signatures are valid

shares.

58

CHAPTER 5

COMPARISON AND ANALYSIS

5.1 Time-Lock Puzzles

• Chapter 3 introduced three different structures of time-lock puzzles based on

mathematical concepts. The initial structure discussed was the repeated squaring-

based time lock puzzles developed by RSW. We also mentioned about its pos-

sible application scenarios. The other presented structures are constructed in

the light of RSW’s time-lock puzzles, making it the pioneer among all the other

structures.

• About homomorphic time-lock puzzles, we introduced two notable use cases

in detail: e-voting scenarios and multi-party contract signing [20]. Further-

more, LHTP is also relevant for use in sealed bid auctions on blockchains and

multi-party coin-flipping scenarios. In addition, homomorphic time-lock puz-

zles structure verifiable timed signatures in 4.3.

• In a demonstration utilizing an e-voting scenario, we presented a visualiza-

tion, as depicted in Figure 3.1, which suggests that homomorphic time-lock

puzzles offer better efficiency compared to their classical counterparts. While

the polynomial time complexity of the setup and generation phases are equiv-

alent, at poly(λ, log(T)), the solving phase for classical puzzles incurs a cost

of poly(λ, T). Conversely, the homomorphic variant requires only poly(λ, |C|)
for the same task.

• We also worked on the computational complexity of RSW’s time-lock puzzles,

LHTLP and MTHLP, which can be seen in the 5.2 in detailed.

59

Table 5.1: Table of Time-lock Puzzles

Schemes Security Proposed Applications
RSW [25] IFP Sealed-bid auctions

Sequential Squaring Fair contract signing
Zero-knowledge arguments
Non-malleable commitments

LHTLP [20] Sequential Squaring E-Voting
DDH over JN Multiparty Coin Flipping
DCR over Z∗

N2

MHTLP [20] Sequential Squaring Multiparty Contract Signing
DDH over JN

FHTLP [20] Sub-exponentially secure iO E-Voting
Sub-exponentially secure OWF Multiparty coin flipping

Sealed-bid auctions

Table 5.2: Comparison of time-lock puzzles
Schemes PSetup PGen PSolve PEval

RSW [25] 3MultZ 1 Enc 1 ExpZN

1 ExpZN

1 ExpZφ(N)

1 AddZN

LHTLP [20] 2MultZ 1 ExpZN
1 ExpZN

(n− 1)MultZN

1MultZN
3 ExpZN2 1 ExpZN2 (n− 1)MultZN2

1 ExpZφ(N)/2
2MultZN2 1 DivZN

1 ExpZ 1 UniSampZN2 1 DivZN2

1 UniSampZ∗
N

1 AddZN

MHTLP [20] 2MultZ 2 ExpZN
1 DivZ 2(n− 1)MultZN

1MultZN
1MultZN

1 ExpZN

1 ExpZφ(N)/2
1 UniSampZN2

1 ExpZ
1 UniSampZ∗

N

ExpA: Exponentiation in group A, where A ∈ {Z,ZN ,ZN2 ,Zφ(N)/2,Zφ(N)}.
DivA: Divison in group A, where A ∈ {Z,ZN2}.
MultA: Multiplication in group A, where A ∈ {Z,ZN ,ZN2 ,Zφ(N)/2}.
AddA: Addition in group A, where A ∈ {ZN}.
Enc: A suitable encryption algorithm such as RC5 or RSA.
UniSampA: Uniform sampling from the group A, where A ∈ {ZN2 ,Z∗

N}

60

5.2 Timed Commitments and Timed Signature Schemes

– In Chapter 4, we began by discussing timed signatures and timed commit-

ment schemes developed by Boneh and Naor. Their timed-commitment

scheme has significant use in contract signing, and the authors presented

a strongly fair protocol for this purpose in their publication [7]. They

present a two-party protocol that allows exchanging RSA, Rabin, or Fiat-

Shamir signatures. Also, other applications, including honesty-preserving

auctions and collective coin-flipping, are discussed.

– Garay and Jakobsson’s structure 4.2 was an extension of Boneh and Naor’s,

and their main contribution and the application was the use of our de-

rived time-lines for a robust release of standard signatures such as RSA,

Schnorr, and DSA [15].

In Boneh and Naor’s schemes, expensive proofs are used to verify the cor-

rectness of time-lines for each commitment. It requires repeating many

times a protocol with k proofs of equality of discrete logs (T = 2k). Nev-

ertheless, in Garay and Jakobsson’s scheme, they perform a simpler ver-

sion of proof of correctness in the setup phase, which does not repeat.

Once the setup is performed and the master time-line established, they

only perform two such equality of discrete log proofs for each time-line

reuse. Despite the open and forced open phases having similar complexity

in both schemes, when we consider the setup phase, Garay and Jakobs-

son’s scheme provides better efficiency.

– Chapter 4.3 introduced the initial verifiable timed signatures on homo-

morphic time-lock puzzles. Thyagarajan et al. exhibit various applica-

tions for VTS [30]. They demonstrate how VTS can serve as the funda-

mental cryptographic component for creating payment channel networks

[13] [23] that provide better on-chain unlinkability for users participat-

ing in transactions, enabling multi-party signing of transactions for cryp-

tocurrencies without any on-chain concept of time, and establishing a

cryptocurrency-based equitable multi-party computation protocol. They

construct VT-BLS, VT-Schnorr, and VT-ECDSA by exploiting the group

structure of the classical ones and applying threshold secret-sharing with

61

a cut-and-choose type of argument. Homomorphic time lock puzzles

provide efficiency gains, as we explained while arguing the efficiency

differences between TLP’s and HTLP’s. The authors implemented VT-

BLS, VT-ECDSA, and VT-Schnorr, then presented and compared the cost

of commit-prove and verification steps and defended the idea that these

structures can be used practically in real-life applications. Also, they

noted that the implementations could be significantly improved using con-

currency and other efficient data structures. Future work may be targeted

on this subject.

– In 2022, Thyagarajan et al. [29] presented a verifiable timed linkable ring

signature version of VTS for Monero. It is an important work to show

how we can use timed signatures in one of the most privacy-providing

blockchains.

– We worked detailed on computational complexities of Thyagarajan et al.

[30]’s verifiable timed signatures and provided the table 5.3. It can be

observed that the costs of setup phases are equivalent for each verifiable

timed signature scheme, and the forced open phase takes same amount

of time for VT-Schnorr and VT-ECDSA signatures. But for VT-BLS, we

have additional t exponentiations. Despite this, the signature construction

phase of VT-BLS offers the least computational cost.

62

Table 5.3: Computational complexities of verifiable timed signatures
Schemes Signature Setup Commit and Verification ForcedOpen

Construction Prove Phase Phase Phase

VT-BLS [25] 1 ExpG0 1 ZKSetup 2(n+ t− 1) Exp (t− 1) Exp t Exp

1 ExpG1 1 LSetup 2(t− 2)Mult
(3/2)(t−1)(t−2)

Mult
(t− 1)Mult

1Hash 1Div 2Div 1Hash (n− t+1) LSolve

1 Pairing (n− t+ 1) Inv (t− 1) LGen t Eval

1Hash n ZKVerify

n LGen (t− 1) Pairing

n ZKProve

(t− 1) Sampling

(n− t+ 1) Eval

VT-Schnorr

[20]
4 Exp 1 ZKSetup 2(n+ t− 2) Exp 4(t− 1) Exp t Mult

2Mult 1 LSetup (3t+ n− 5)Mult
(t − 1)(3t − 5)

Mult
(n− t+1) LSolve

2Hash 1Div 2Div 1Hash t Eval

1 Add (n− t+ 1) Inv (t− 1) LGen (t− 1) Add

1Hash n ZKVerify

n LGen

n ZKProve

(t− 1) Sampling

(n− t+ 1) Eval

(2t− 3) Add

VT-ECDSA

[20]
5 Exp 1 ZKSetup (n+ t− 1) Exp 2t Exp t Mult

1Mult 1 LSetup (n+ t− 2)Mult
(t − 1)(3t − 4)/2

Mult
(n− t+1) LSolve

1MultZq 1Div 1Div 1Hash t Eval

1 Inv (n− t+ 2) Inv (t− 1) LGen (t− 1) Add

1DivZq 1Hash n ZKVerify

2Hash n LGen

1 AddZq n ZKProve

(t− 1) Sampling

(n− t+ 1) Eval

(t− 1) Add

ExpA: Exponentiation in group A where A ∈ {G,G0,G1}.
MultA: Multiplication in group A where A ∈ {G,Zq}.
DivA: Division in group A where A ∈ {G,Zq}.
Inv: Inversion in group G.
Add: Addition operation in group A where A ∈ {G,Zq}.
Pairing: Bilinear pairing operation.
Hash: Hash functions in the schemes.
Sampling: Uniform sampling operation in group Zq .
ZKSetup,ZKVerify,ZKProve: The zero-knowledge algorithms that we used in 4.3.
LSetup,LGen,LSolve: Linearly homomorphic time-lock puzzle algorithms in 3.3.1 and 5.2.
Eval: Lagrange polynomial basis evaluation computations.

63

64

CHAPTER 6

CONCLUSION

So far, our investigation has focused on the prominent cryptographic structures

and protocols of timed cryptography with the motivation of sending informa-

tion to the future. This journey started with a brilliant question posed by cy-

berpunk and subsequently led to the development of sophisticated and practical

cryptographic frameworks.

In the scope of this thesis, firstly, a brief overview of the mathematical back-

ground of various commonly used structures is given to the readers. Then the

focus shifts to exploring timed cryptography, starting with the concept of time-

lock puzzles. The chapter discusses three constructions based on the same idea,

and we highlight their similarities and differences. The next chapter uses the

same methodology to examine three different timed commitment and timed

signature schemes. It is important to note that the literature presented in this

thesis does not contain entirely distinct structures but rather builds upon each

other chronologically. In the chapter dedicated to comparison and analysis, we

concentrate on the possible application scenarios of the protocols under investi-

gation. Additionally, we discussed the key aspects of the efficiency differences

among the given constructions. The utilization of time-lock puzzles and timed

signatures have a significant potential to be integrated into widely used systems

such as e-voting, contract signing protocols, and blockchain areas.

As future work,

– There is potential to develop new methods for timed commitments and

65

signatures using different primitives of cryptography. The security of ex-

isting structures relies on classic hard problems, but we know these as-

sumptions are vulnerable to post-quantum computers. The use of lattice

basis reduction algorithms, which can be executed sequentially [7], may

be incorporated into timed cryptography.

– The complexity of the time-lock puzzles and timed signature schemes can

be analyzed by implementing them, and new cryptographic primitives can

be integrated into the structures in order to offer more efficient schemes.

For example, in Thyagarajan et al.’s work [29], the curves used for VT-

BLS needed to be optimized, leading to faster computations. An optimiza-

tion work for BLS can lead to observing the VT signature’s potential.

– Timed cryptography has a relatively old history, but its practical imple-

mentations have only been recently developed. It suggests the potential

for creating novel applications through further research in this field.

66

REFERENCES

[1] W. Banasik, S. Dziembowski, and D. Malinowski, Efficient zero-
knowledge contingent payments in cryptocurrencies without scripts, vol-
ume 9879, pp. 261–280, 09 2016, ISBN 978-3-319-45740-6.

[2] F. Bao, An efficient verifiable encryption scheme for encryption of dis-
crete logarithms, in J.-J. Quisquater and B. Schneier, editors, Smart Card
Research and Applications, pp. 213–220, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000, ISBN 978-3-540-44534-0.

[3] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and
B. Waters, Time-lock puzzles from randomized encodings, in Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, ITCS ’16, p. 345–356, Association for Computing Machinery,
New York, NY, USA, 2016, ISBN 9781450340571.

[4] P. E. Black, Big-o notation, in Dictionary of Algorithms and Data Struc-
tures [online], Paul E. Black, ed. 6 September 2019. (accessed TODAY)
Available from: https://www.nist.gov/dads/HTML/bigOnotation.html,
1978.

[5] L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudo random
number generator, SIAM J. Comput., 15(2), p. 364–383, may 1986, ISSN
0097-5397.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and verifi-
ably encrypted signatures from bilinear maps, in Proceedings of the 22nd
International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT’03, p. 416–432, Springer-Verlag, Berlin, Hei-
delberg, 2003, ISBN 3540140395.

[7] D. Boneh and M. Naor, Timed commitments, in M. Bellare, editor, Ad-
vances in Cryptology — CRYPTO 2000, pp. 236–254, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000, ISBN 978-3-540-44598-2.

[8] D. Chaum, J.-H. Evertse, and J. van de Graaf, An improved protocol
for demonstrating possession of discrete logarithms and some general-
izations, in D. Chaum and W. L. Price, editors, Advances in Cryptology
— EUROCRYPT’ 87, pp. 127–141, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1988, ISBN 978-3-540-39118-0.

67

[9] D. Chaum and T. P. Pedersen, Wallet databases with observers, in Ad-
vances in Cryptology - CRYPTO ’92, 12th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings, volume 740 of Lecture Notes in Computer Science, pp. 89–
105, Springer, 1992.

[10] G. Couteau, T. Peters, and D. Pointcheval, Encryption switching pro-
tocols, in Proceedings, Part I, of the 36th Annual International Cryp-
tology Conference on Advances in Cryptology — CRYPTO 2016 - Vol-
ume 9814, p. 308–338, Springer-Verlag, Berlin, Heidelberg, 2016, ISBN
9783662530177.

[11] I. Damgård, Practical and provably secure release of a secret and exchange
of signatures, J. Cryptology, 8, pp. 201–222, 1995.

[12] C. Dwork and M. Naor, Zaps and their applications, in Proceedings 41st
Annual Symposium on Foundations of Computer Science, pp. 283–293,
Nov 2000, ISSN 0272-5428.

[13] C. Egger, P. Moreno-Sanchez, and M. Maffei, Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel
networks, in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, p. 801–815, Asso-
ciation for Computing Machinery, New York, NY, USA, 2019, ISBN
9781450367479.

[14] T. ElGamal, A public key cryptosystem and a signature scheme based on
discrete logarithms, in G. R. Blakley and D. Chaum, editors, Advances in
Cryptology, pp. 10–18, Springer Berlin Heidelberg, Berlin, Heidelberg,
1985, ISBN 978-3-540-39568-3.

[15] J. A. Garay and M. Jakobsson, Timed release of standard digital signa-
tures, in M. Blaze, editor, Financial Cryptography, pp. 168–182, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, ISBN 978-3-540-36504-4.

[16] J. A. Garay and C. Pomerance, Timed fair exchange of standard sig-
natures, in R. N. Wright, editor, Financial Cryptography, pp. 190–207,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, ISBN 978-3-540-
45126-6.

[17] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Can-
didate indistinguishability obfuscation and functional encryption for all
circuits, in 2013 IEEE 54th Annual Symposium on Foundations of Com-
puter Science, pp. 40–49, Oct 2013, ISSN 0272-5428.

[18] S. Hohenberger and B. Waters, Synchronized aggregate signatures from
the rsa assumption, Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS. Springer, Heidelberg,
p. 197–229, May 2018.

68

[19] H. Lin, R. Pass, and P. Soni, Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles, in 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp.
576–587, Oct 2017, ISSN 0272-5428.

[20] G. Malavolta and S. Thyagarajan, Homomorphic Time-Lock Puzzles and
Applications, pp. 620–649, 08 2019, ISBN 978-3-030-26947-0.

[21] T. C. May, Timed-release crypto, http://www.hks.net/cpunks/cpunks-
0/1460.html., February 1993.

[22] R. C. Merkle, Secure communications over insecure channels, Commun.
ACM, 21(4), p. 294–299, apr 1978, ISSN 0001-0782.

[23] J. Poon and T. Dryja, The bitcoin lightning network: Scalable off-chain
instant payments, 2016.

[24] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining dig-
ital signatures and public-key cryptosystems, Commun. ACM, 21(2), p.
120–126, feb 1978, ISSN 0001-0782.

[25] R. L. Rivest, A. Shamir, and D. A. Wagner, Time-lock puzzles and timed-
release crypto, Technical report, USA, 1996.

[26] A. D. Santis, S. Micali, and G. Persiano, Non-interactive zero-knowledge
proof systems, in A Conference on the Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology, CRYPTO ’87, p. 52–72,
Springer-Verlag, Berlin, Heidelberg, 1987, ISBN 3540187960.

[27] C. P. Schnorr, Efficient signature generation by smart cards, J. Cryptol.,
4(3), p. 161–174, jan 1991, ISSN 0933-2790.

[28] A. Shamir, How to share a secret, Commun. ACM, 22(11), p. 612–613,
nov 1979, ISSN 0001-0782.

[29] S. A. Thyagarajan, G. Malavolta, F. Schmid, and D. Schröder,
Verifiable timed linkable ring signatures fornbsp;scalable payments
fornbsp;monero, in Computer Security – ESORICS 2022: 27th European
Symposium on Research in Computer Security, Copenhagen, Denmark,
September 26–30, 2022, Proceedings, Part II, p. 467–486, Springer-
Verlag, Berlin, Heidelberg, 2022, ISBN 978-3-031-17145-1.

[30] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and
D. Schröder, Verifiable timed signatures made practical, in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, p. 1733–1750, Association for Computing Machinery,
New York, NY, USA, 2020, ISBN 9781450370899.

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	PRELIMINARY TO THE SUBJECT
	Notations
	Mathematical Backgrounds
	Digital Signatures
	RSA Signature Scheme
	Digital Signature Algorithm
	Elliptic Curve Digital Signature Algorithm
	Schnorr Signature Scheme
	BLS Signature Scheme

	TIME-LOCK PUZZLES
	Merkle's Cryptographic Puzzles
	Repeated Squaring Based Time-lock Puzzles
	Homomorphic Time-lock Puzzles
	Linearly Homomorphic Time-lock Puzzles (LHTLP)
	Multiplicatively Homomorphic Time-lock Puzzles
	Fully Homomorphic Time-lock Puzzles

	Applications of Homomorphic Time-Lock Puzzles
	Linearly Homomorphic Time-Lock Puzzles on E-Voting
	Multiplicatively Homomorphic Time-Lock Puzzles on Multi-Party Contract Signing

	Timed Signatures
	Boneh and Naor's Timed Signature Scheme
	Boneh and Naor's Timed Commitment Scheme: boneh:00
	Boneh and Naor's Timed Signature Scheme:

	Garay and Jakobsson's Timed Signatures
	Garay and Jakobsson's Time-Line Commitment Scheme:
	Garay and Jakobsson's Time-Line Signature Scheme:
	Timed RSA Signature Scheme:
	Timed Schnorr Signature Scheme:
	Timed DSA Signature Scheme:

	Verifiable Timed Signature Scheme
	VT-BLS Signatures
	VT-Schnorr Signatures
	VT-ECDSA Signatures

	COMPARISON AND ANALYSIS
	Time-Lock Puzzles
	Timed Commitments and Timed Signature Schemes

	CONCLUSION
	REFERENCES

